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EERC DISCLAIMER 
 
LEGAL NOTICE This research report was prepared by the Energy & Environmental 

Research Center (EERC), an agency of the University of North Dakota, as an account of work 
sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory 
(NETL). Because of the research nature of the work performed, neither the EERC nor any of its 
employees makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement 
or recommendation by the EERC. 
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This report was prepared as an account of work sponsored by an agency of the United 

States Government. Neither the United States Government, nor any agency thereof, nor any of 
their employees, makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the United 
States Government or any agency thereof. 

 
 

NDIC DISCLAIMER 
 
This report was prepared by the EERC pursuant to an agreement partially funded by the 

Industrial Commission of North Dakota, and neither the EERC nor any of its subcontractors nor 
the North Dakota Industrial Commission (NDIC) nor any person acting on behalf of either: 

 
(A) Makes any warranty or representation, express or implied, with respect to the 

accuracy, completeness, or usefulness of the information contained in this report or 
that the use of any information, apparatus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

 



 

 
 

(B) Assumes any liabilities with respect to the use of, or for damages resulting from the 
use of, any information, apparatus, method, or process disclosed in this report. 

 
Reference herein to any specific commercial product, process, or service by trade name, 

trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the North Dakota Industrial Commission. The views and 
opinions of authors expressed herein do not necessarily state or reflect those of the North Dakota 
Industrial Commission. 
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 In both injection scenarios, the injected sour CO2 showed migration structurally upward 
(buoyancy effects) and plumes developed at the contact between the reservoir (reef) and 
the cap rock (shale) in structural highs. The plume was contained within the reservoir 
(reef) in all scenarios over the 100 years. 
 

 Both injection site scenarios showed the required injectivity for the life of the injection 
periods while ensuring that the maximum injection sandface pressures at each of the 
injection wells did not exceed 80% of the fracture gradient – an anticipated regulatory 
restriction. The BHPs of each of the injection wells in the c-47-E location were 
predicted to be 1000 to 3000 kPa lower than the BHPs at the c-61-E location. 

 
 The c-61-E showed higher reservoir pressures at the end of the injection life than the c-

47-E site as the pressure in the c-61-E area was not able to dissipate as easily as the c-
47-E site because of the presence of a nearby low-permeability barrier that was 
identified during the history match process.  

 
 The injection site around c-47-E is a better option compared to the c-61-E area because 

the injected sour CO2 plume did not contact the adjacent gas pools during the 100-year 
simulation period and the resulting reservoir pressures were lower which is a better 
situation as regards the cap rock integrity.  

 
 The low-permeability cases applied to the c-47-E injection area before the history match 

process suggests that the CO2 plume area will be larger and may result in migration of 
the CO2 plume into the c-61-E area and a small gas-producing pool; this risk can be 
managed through application of the first recommendation noted below to further 
understand the likelihood of this scenario. The impact is likely past the operational life 
of this small gas pool and potential acquisition of the small gas pool in the c-61-E area. 

 
 The history match process and simulations show that the c-47-E injection area has had 

some pressure reduction since the 1960s because of the pressure sink in the model area 
from the gas production and also because the reef is subhydrostatic naturally. The 
simulation scenarios indicate that, while there are pressure increases in the reservoir 
from the injection around c-47-E, the maximum reservoir pressure increase basically 
returns to its 1960 reservoir pressure. 

 
 To further confirm the evaluations presented in the study, the following recommendations 
are suggested to be included in any future modeling and simulation studies: 

 
 Collection of more geological information in the c-47-E area by means of drilling, 

testing, coring, and logging of a new well and acquisition of a new 3-D seismic survey 
over the predicted CO2 plume footprint.  

 
 Integration of various physical phenomena such as geochemical reactions, 

geomechanical behaviors, and thermal effects into the dynamic model to 
comprehensively understand the sink–seal system for more reliable predictions.    
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storage evaluation and risk assessment after model validation (history matching). An overview of 
each model version is provided in Appendix A: Static Geologic Modeling Development. 
 
 
DYNAMIC MODELING AND SIMULATIONS 

 
 The dynamic model was built using the static geologic model Version 3. The initial 
simulations include a base case and initial scenario explorations for investigating the impact of 
reservoir properties/parameters such as permeability, the ratio of vertical permeability to 
horizontal permeability (kv/kh), and fault transmissibility on CO2 plume and pressure buildup. 
The model was then optimized by introducing three techniques: grid-size sensitivity analysis, 
numerical tuning, and properties/parameters sensitivity analysis, to reduce simulation run time. 
The optimized model was validated by history matching to obtain a reasonable match between 
simulated results and historical data. The top two “best” matched numerical models were 
selected for predictive simulations for both injection locations: c-47-E and c-61-E.  

 
Base Case and Initial Scenario Explorations 
 
Five scenarios were designed for the base case and initial property explorations. It includes 

base case with and without CO2 injection for comparing the effect of pressure changes, cap rock 
and seal capacity by reducing permeability, permeability ratio kv/kh, fault transmissibility 
changes, and regional permeability variations on CO2 movement. All of these cases are with  
25 and 50 years of sour CO2 injection at a rate of 120 MMscf/d and run up to 100 years from the 
beginning of the injection to investigate the effects from various properties (Table 1). The results 
indicate that these key reservoir properties need to be tracked during history matching for model 
validation. The details on these simulations are provided in Appendix B: Base Case and Initial 
Scenario Explorations. 

 
 

Table 1. Five Test Case Scenarios Used in the Base Case and Initial Scenario Explorations 
 
Test Case Scenario 

CO2 
Injection kv/kh

Fault 
Transmissibility 

Reservoir 
Permeability

Base Case (with/without CO2 injection) Yes/no 0.2 1 Base case

Cap Rock Reduced Permeability Case* Yes 0.2 1 Base case

kv/kh Case Yes 0.2, 0.3 1 Base case

Fault Transmissibility Case Yes 0.2 0, 0.25, 0.75, 1 Base case

Reservoir Permeability Case Yes 0.2 1 2× and 5× base 
case

* Cap rock reduced permeability:       
 The permeability of the Muskwa zone was 0.01 × base case.     
 The permeability of the Otter Park zone was 0.1 × base case.     
 Except for breaches in the Watt Mountain zone, the permeability of this zone was 0.1 × base case. 
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Predictive Simulations Before History Matching 
 
Ten test cases were simulated to compare injection scenarios for overall performance and 

risk assessment in and around c-47-E and c-61-E locations (Table 2). In view of base case and 
initial scenario explorations (Table 1), a kv/kh ratio of 0.2, a fault transmissibility of 1.0, and an 
injection rate of 120 MMscf/d were fixed for these cases. Cases 1–4 modeled three injection 
wells at 25- and 50-year injections, assuming base case reservoir permeability. Cases 5 and 6 
assumed lower permeability near c-47-E and required a facies adjustment (i.e., decreasing 
permeability within model domains for a particular facies, see Appendix C: Predictive 
Simulations Before History Matching) and a wellbore adjustment (i.e., increasing the number 
and location of injection wells from three to six). Cases 7 and 8 evaluated injection at two wells 
near c-61-E. To enhance the sour CO2 injection, Cases 9 and 10 were designed to examine the 
cumulative gas improvement with more perforations than Cases 5 and 6. Results of all 
simulations are given in Appendix C: Predictive Simulations Before History Matching. These 
results infer that the risk of sour CO2 injection from c-47-E is lower than the risk from c-61-E. 
However, that needs to be confirmed after model validation. 

 
Model Optimization and Validation 
 
The dynamic model was optimized and validated by using a dynamic modeling workflow 

process proposed by the EERC. This workflow process includes three optimization techniques 
(grid-size sensitivity analysis, numerical tuning, and properties/parameters sensitivity analysis), 
model validation (history matching), and predictive simulations (Figure 2).  

 
The model validation process was used to improve modeled outputs for obtaining a good 

match with historical data, which demonstrates the ability of the model to accurately predict 
reservoir conditions. As a commonly used technique, history matching is a method of adjusting, 
or tuning, reservoir characteristics (properties) to match historical field data through an iterative 
trial-and-error process. This trial-and-error process varies parameters and properties within 
accepted and realistic engineering and geologic ranges, while still reasonably matching the 
simulated results with the historical data. 

 
 History-Matching Validation Data 

 
Gas and water production and water disposal data within the Fort Nelson CCS Project 

study area were used for the history matching. Available from GeoVista 
(www.divestco.com/Solutions/Engineering/Software/GeoVista-%281%29.aspx) in the Fort 
Nelson CCS Project study area are monthly (being averaged as quarterly data set for history 
matching) gas and water production data, injected water volumes, and scatter points of 
bottomhole pressure (BHP) for 85 production wells and seven water disposal wells. The data for 
all of the production wells were collected from 1961 to 2010 (Table D-2 and Figure D-3).  

 
 History matching was primarily based on achieving a satisfactory mass balance on the 
cumulative gas and water production data and water disposal data within the time period from 
1961 to 2010. Once primary matching of the mass balances yielded a satisfactory global 
objective function tolerance, simulated and historical data values for gas and water production 
and BHPs for all of the individual wells were evaluated. 



 

 

5 

Table 2. Ten Test Case Scenarios Used in the Predictive Simulations (before history matching) Comparing Injection Locations 
c-47-E and c-61-E 
Test 
Case 
Scenario Location 

No. of 
Injection 

Wells 
Injection Well 

Names 

Injection 
Time, 
years 

Injection 
Rate, 

MMscf/d kv/kh 
Fault 

Transmissibility
Reservoir 

Permeability 
1 c-47-E 3 c-18-E, c-47-E, and 

c-36-E 
25 120 0.2 1.0 Base case 

2 c-47-E 3 c-18-E, c-47-E, and 
c-36-E 

50 120 0.2 1.0 Base case 

3 c-61-E 3 a-91-E, c-61-E, and 
c-88-F 

25 120 0.2 1.0 Base case 

4 c-61-E 3 a-91-E, c-61-E, and 
c-88-F 

50 120 0.2 1.0 Base case 

5 c-47-E 6 a-67-E, c-18-E, c-
47-E, d-09-E, d-36-

E, and d-61-A 

25 120 0.2 1.0 Low 
permeability* 

6 c-47-E 6 a-67-E, c-18-E, c-
47-E, d-09-E, d-36-

E, and d-61-A 

50 120 0.2 1.0 Low 
permeability* 

7 c-61-E 2 a-69-F and b-31-E 25 120 0.2 1.0 Base case 

8 c-61-E 2 d-49-F and d-11-E 50 120 0.2 1.0 Base case 

9 c-47-E 6 a-67-E, c-18-E, c- 
47-E, d-09-E, d-36-
E, and d-61-A (more 

perforation) 

25 120 0.2 1.0 Low 
permeability* 

10 c-47-E 6 a-67-E, c-18-E, c-
47-E, d-09-E, d-36-
E, and d-61-A (more 

perforation) 

50 120 0.2 1.0 Low 
permeability* 

* Facies adjustments for the low-permeability cases are described in detail in Appendix C. 
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),( pwT is the total of time step. 
s

tpwR ,,  
represents simulation results while m

tpwR ,,  is measured historical data. 
m

pwR ,  is the measured maximum change for well w and production data p. 
m

pwE ,  is measurement error. 

 
In this study, the above-mentioned global objective function (Eq. 1) was used for history 

matching of gas and water production, water disposal, and BHPs. 
 

History-Matching Process 
 
The history-matching process is iterative, whereby each simulation run produces a new 

candidate value (or values), which can then be used for the next iteration. As this process is 
repeated, the difference between historical data and simulation results, as measured by the global 
objective function error (Eq. 1), decreases to an asymptotical convergence (Figure 3). A flow 
diagram for this procedure is shown in Figure 4.  

 
History-Matching Results 

 
The final history-matching iteration was obtained after 494 jobs. The matching period 

covered the injection and production history of the nearby gas pools between January 1, 1961, to 
October 1, 2010. Based on the convergence of the global objection function (Figure 3), the 
lowest obtainable errors for gas production, water disposal, and water production are 0.49% 
(Figure 5), 0.43% (Figure 6), and 7.03% (Figure 7), respectively. When water production results 
are taken into account, the lowest obtainable global error was 3.91% (Figure 3). The role of gas 
production rates as a primary dominant parameter for well control may be attributed to the high 
global error value of water production. The scatter BHP data, which do not cover all simulation 
period intervals, also appear to affect the value. However, the history-matching results from 
these efforts are good enough to have confidence in model behaviors and predictions. The 
matching results of cumulative gas, water, and BHP for the top ten wells are shown in  
Appendix D: Model Optimization and Validations (history matching). 

 
Predictive Simulations after History Matching 
  
Based on history matching, the top two “best” matching cases were selected for the 

predictive simulations. According to historical data, a total of 38 active production wells 
(Appendix E) need to be kept on operation status (open or shut in) from July 2010 to the date 
when the gas production rate is less than 2500 m3/day under the minimum BHP limits of the 
wells. The produced water during this period was then reinjected into one of three nearby water 
disposal wells (Appendix E). An example of gas rate control and water recycle is shown in 
Figures E-3–E-12 in Appendix E: Predictive Simulations after History Matching. 
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MODEL LIMITATIONS AND APPLICABILITY 
 
The historical data used for history matching in this project include the volume of 

production gas and water, water disposal, and scatter BHPs of wells from 1961 to 2010. For the 
history-matching period, no well data were available outside of Gas Pools A and B. Therefore, 
regions beyond the gas pools may introduce uncertainty to the modeling. Despite this potential 
uncertainty, a good match was obtained for gas and water volumes and BHPs. In view of history-
matching results, the pressure distribution in the regions beyond the gas pools may require 
further examinations and comparison with hydrogeological analyses. The aquifer boundary 
conditions and low permeability barrier between Gas Pools A and B were introduced to match 
the pressure that was interpolated from measurements of the Exploratory Well c-061-E in the 
injection region. Although the pressure prediction was improved, because the data beyond the 
gas pools were scarce (especially the transient region between injection and gas pools), simulated 
pressures are quite uncertain.  

 
The amount of CO2 dissolved into water within the reservoir, and subsequent geochemical 

reactions, could affect the potential CO2 storage evaluations, especially with long-term injection 
and postinjection periods at the reservoir conditions. As the CO2 dissolves into the formation 
brine, a change in pH values may increase the chances of various geochemical reactions, 
including mineral dissolution and/or mineral precipitation. Thus, for predictive purposes, 
particularly in the longer simulations (> 50 years), the contributions of these geochemical 
reactions and associated CO2 mineralization toward the CO2 plume evolution need to be further 
studied by means of geochemical modeling. These studies require collection of formation fluid 
and new mineralogical samples and laboratory testing, both of which are not available at this 
time. 

 
CO2 dissolution, coefficients of geochemical reactions, and CO2 mineralization rates are 

temperature-dependent. The scale of thermal effects on the simulations mainly depends on the 
temperature difference between the reservoir and the injected CO2. If the difference between the 
injected CO2 and the formation is large, then the fluid properties such as density and viscosity 
would be more variable and could have some effect on both the geochemical and potential 
geomechanical reactions. The thermal effects on long-term storage could also be addressed in 
geochemical modeling studies, which may not be possible until more accurate temperature, fluid, 
and mineral samples are collected from the exploratory wells. 

 
 

SUMMARY 
 
With the optimization and model validation, the Version 3 static geologic model shows a 

good match with the historical data, especially gas and water production, water disposal, and 
regional pressure distribution in the gas pools. A good history match for these data has provided 
improved confidence in the modeling of the geological characteristics in the project area and 
better appreciation of the performance of a CCS project at this site. 

 
Dynamic predictive model results indicate that the geology in the study area is very 

conducive for the long-term storage of CO2. The simulation results also validate prior 
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assumptions of excellent reservoir injectivity, lateral plume spreading, and the potential 
effectiveness and risk increases of alternative injection techniques for both injection locations in 
and around c-47-E and c-61-E. All of the tested injection sites show sufficient storage capacity 
for injection of the desired amount of CO2 in the model area. However, the area in and around c-
47-E demonstrated the greater capability for storing the desired amount of CO2 within the model 
area because there is no contact to the gas pools within the 100-year simulation period and the 
maximum BHPs are below 23,000 kPa for all cases after history matching.  

 
To further confirm the evaluations presented in the study, two main recommendations are 

suggested to be included in the future modeling and simulation study: 1) more geological 
information for the injection region, especially in the c-47-E region and the transient region 
between gas pools and injection area, to confirm the existence of adequate reservoir rock and the 
presence or lack of any low-permeability barrier (or fault) that was artificially introduced in the 
dynamic model and 2) integrating various physical phenomena such as geochemical reactions, 
geomechanical behaviors, and geothermal effects into the dynamic model. Such integration will 
improve the understanding of the sink–seal system comprehensively for more accurate 
predictions. 
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sparse. However, although rock property data for the area are limited, the data that do exist 
suggest that porosity and permeability are likely adequate to support large-scale injection of CO2. 
The lack of existing data below the upper portion of the Slave Point Formation (i.e., for the Watt 
Mountain, Sulphur Point and Keg River formations) in the Fort Nelson area means that 
exploration-level geological characterization activities (e.g., well drilling and testing, seismic 
data acquisition and processing, etc.) must be conducted to evaluate storage capacity, injectivity, 
and other containment parameters of the sink–seal system.  

 
With respect to seals that will prevent upward migration of the injected sour CO2, the Watt 

Mountain is expected to be an internal reef baffle slowing down the upward migration of injected 
CO2 from the Sulphur Point/Keg River Formations into the Slave Point Formation. Above the 
Slave Point Formation, the shale formations of the overlying Middle Devonian Muskwa and Fort 
Simpson shales will provide the primary seal with respect to preventing leakage to the surface. 
Above the Fort Simpson shale are several additional regional aquitard layers providing additional 
containment between the target injection formations and the surface, specifically tight limestone 
formations Redknife, Tetcho, and Kotcho and the Mississippian-age Banff Formation. It is to be 
noted that the Mississippian age Rundle Group may be potentially porous in the project area, but 
the porosity lacks continuity and is brine-filled where it is porous. Above the Rundle Group is 
the shale of the Cretaceous-age Buckinghorse formation, which provides yet another layer of 
protection from leakage to the surface. In the project area, the Scatter Formation exists which is 
believed, at the date of this report, to be providing some of the groundwater in the project area.  

 
 

VERSIONS OF THE STATIC MODEL 
 
Static reservoir modeling based on the geological characterizations included Versions 1–3, 

evolving from a scoping-level model to a more detailed model. An overview for each model 
version is provided below. 

 
Version 1 Scoping Model 
 
The Version 1 scoping model was developed by Computer Modelling Group Ltd. (CMG) 

and Spectra Energy’s Geologic Characterization Team. It was developed after Exploratory Well 
c-61-E was drilled in March 2009. The Version 1 scoping model was an initial “flow units” 
model designed to do a quick check on the risk of impact to offset Slave Point gas cap resources 
and included the following: 

 
• Preliminary data from the logging, testing, and coring of Well c-61-E. 
 
• A stratigraphic and structural model that was developed using a preliminary geological 

understanding of the flowing units (aquifers) and the aquitard layers that included only 
the formation brine and injected CO2 and no in situ gas pools present. 

 
• Generic reservoir properties, such as permeability and porosity, distributed 

homogeneously by model flowing zone and aquitard layer. 
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A 200-year simulation was run, with carbon dioxide (CO2) injection conducted over the 
first 100 years and the second 100 years representing the postinjection period during which the 
CO2 was allowed to migrate by buoyancy. Predictive injection simulations were run using Well 
c-61-E and a second generic well located about 5 km to the west as injection wells. Each well 
was simulated to inject 1.1 × 106 tonnes per year of CO2. Outlines of two nearby gas pools 
(Clark Lake Slave Point A and B) were included in the model to determine when and if the 
injected CO2 from Well c-61-E would potentially contact either gas pool over a 100-year time 
frame. The results of these simulations were favorable, as they predicted that: 

 
• Formation pressures would not exceed 80% of the estimated fracture pressure gradient 

(17 kPa/m), indicating that the mechanical strength of the reservoirs and seals is 
adequate to hold the injected volumes of CO2 without fracturing. 

 
These predictions were considered to represent the worst-case scenarios for CO2 migration, 

since the injection “flowing unit” was direct aquifer to offset gas pools, only had homogeneous 
properties, and only structural CO2 trapping was considered. Other CO2-trapping mechanisms 
that would further restrict migration, such as capillarity and aqueous dissolution and mineral 
formation, were not included. 
 

Version 2 Model 
 
The Version 2 model was developed by Spectra Energy’s Geologic Characterization Team 

and the Energy & Environmental Research Center (EERC) immediately after the Version 1 
scoping model (summer 2009). The Version 1 scoping model and the preliminary results of the 
Version 2 model were used as the basis for the first-round risk assessment. Details of the Version 
2 model included the following: 

 
• A more rigorous understanding of the structure, reef edge, facies, or zones and a more 

detailed understanding of the reservoir and cap rock properties. 
 
• Reasonable variations on many of the reservoir parameters, including the level of 

communication between different formations or horizons and the influence of the 
production and injection activities in the nearby gas pools (Figure A-4). 

 
• A geologic model using Schlumberger’s Petrel seismic-to-simulation software, which 

was imported into CMG’s generalized equation-of-state model (GEM) simulator for 
predictive simulations. 

 
• Models for the formation brine, in situ natural gas (methane, CO2, and H2S), and 

injected sour CO2 (composition ranging from 85% CO2 and 15% H2S to 95% CO2 and 
5% H2S), which were imported into the CMG GEM simulators for all simulation in this 
report. 
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Version 3 Model 
 
The Version 3 model was jointly developed by the EERC and Spectra Energy’s Geologic 

Characterization Team. Based on available geophysical and seismic data, 13 domains and ten 
zones were identified. Domains were based on zones of consistent rock properties that may relate 
to a depositional setting or structural feature. In some cases, a domain may cross formation 
boundaries (e.g., Upper Chinchaga and Lower Keg River). The formation intervals that were 
included in the 13 domains include Fort Simpson Formation, Muskwa Formation, Otter Park 
Formation, Upper and Lower Slave Point Formation, Watt Mountain Formation, Sulphur Point 
Formation, Upper and Lower Keg River Formation, and Upper and Lower Chinchaga Formation 
(Table A-1 and Table A-2). 

 
 
Table A-1. June 2010 Petrophysical Reservoir Model Domains 
Spectra Domain 
Number Domain Name Formation 
1 Shelf margin dolomite Sulphur Point 
2A Shelf margin dolomite Upper and Lower Slave Point 
2B Shelf dolomite Upper and Lower Slave Point 
3 Upper foreslope to shelf/reef 

margin dolomite 
Lower Keg River/Upper 

Chinchaga 
4 Restricted intertidal shelf 

dolomite 
Upper and Lower Slave Point 

5 Deep marine shelf 
dolomite/limestone 

Upper Slave Point/Sulphur Point 
Upper and Lower Keg River 

6 Unstable slope 
limestone/dolomite 

Lower Keg River/Upper 
Chinchaga 

7 Restricted shelf platform 
dolomite/anhydrite  

Chinchaga 

8 Deep shelf limestone Upper and Lower Slave Point 
Sulphur Point 

9 Otter Park basinal calcareous 
shale 

Otter Park 

10 Sulphur Point/Evie shelf 
limestone  

Muskwa/Sulphur Point 
Upper and Lower Keg 

River/Chichanga 

11 Sags  Vertical hydrothermal conduits 

12 Shallow marine  Watt Mountain 
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Table A-2. Model Domains and Parameters 

  Porosity Permeability, mD 

  

 Sensitivity  
Range 

Sensitivity  
Range 

Rock Type Formation Dolomitization Base Case Low High 
Base 
Case Low High 

1 Dolomite Basal Slave Point/Sulphur 
Point/Top Keg River 

Pervasive HTD, vugs, fractures 8% 5% 11% 600 200 1000 

2A Dolomite Upper Slave Point Extensive HTD, vugs, fractures 9% 6% 10% 200 50 300 

2B Dolomite Upper Slave Point/Lower 
Slave Point 

Extensive HTD, vugs, small fractures 6% 5% 9% 10 1 40 

3 Dolomite Keg River/Upper Chinchaga Regional matrix HTD, pores, vugs, 
fractures 

5% 4% 6% 10 5 20 

4 Dolomite Upper Slave Point and 
Sulphur Point 

Variable, strata-selective HTD, small 
vugs, fractures 

Interlayer 
9%/6% 

5%/9% 6%/9% 100/10 200/0.1 200/1 

5 Dolomite/limestone Lower Slave Point/Sulphur 
Point/Keg River 

Variable, strata-selective HTD Interlayer 
9%/2% 

2%/3% 6%/9% 100/0.1 200/.01 200/0.1 

6 Limestone/dolomite Keg River Regional matrix Interlayer 
2%/6% 

2%/3% 5%/9% 0.1/10 .01/40 .01/41 

7 Dolomite/anhydrite Chinchaga Regional matrix 0% 0% 0% 0 0 0 

8 Limestone Slave Point/Sulphur Point None/minor local HTD overprint 2% 1% 3% 0.1 0.01 1 

9 Calcareous shale Otter Park None 3% 2% 4% 100 50 100 

10 Shale/limestone Upper Keg River/Klua/Evie None/minor local HTD 6% 4% 9% 250 175 335 

11 Dolomite Vertical Hydrothermal 
Conduits 

Pervasive HTD 5% 1% 10% 30 1 100 

12 Silty 
dolomite/limestone 

Watt Mountain Matrix to none 3% 2% 4% 0.01 0.01 1 

Note:  Suphur Point and Keg River Aquifer domains projected from Slave Point model; domains arranged from most to least permeable/porous. 
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From available petrophysical and seismic data, the potential injection unit was modeled as 
primarily dolostone rock (~95%), representing depositional environments of middle and upper 
foreslope to reef margin shoal. The lithofacies were determined as grainstones, rudstones, and 
floatstones. Dominant biota is represented mainly by dendroid to tabular stromatoporoids and 
thamnoporid corals. The matrix includes secondary pervasive hydrothermal dolomitization 
(HTD), vugs, and fractures. Average porosity, determined from core analysis, was estimated as 
9%, and permeability, based on drillstem testing analysis, was estimated in the range of 50–
800 mD.  

 
Based on the available geophysical data, testing analyses, petrophysical analyses, review of 

available core, and interpretation of the facies for the barrier reef complex within the Fort Nelson 
CCS project area, several iterative static models were constructed. After a meeting in June of 
2010 and after the additional information became available, a revised static geologic model was 
constructed. Porosity and permeability by domain and zone were populated with a data set 
provided by Spectra Energy. Surface elevation from the topographic map was added, and the 
temperature gradient, salinity, and pressure information was updated with data from Canadian 
Discovery Ltd. (CDL) (Canadian Discovery Ltd., 2009). Seismic data in conjunction with 
analyses of drillstem tests, core analyses, and facies interpretation were used as an aid in 
assessing the variogram ranges. Refined interpretation of structure contour and small synthetic 
and antithetic faults from seismic data were populated (Figures A-5 and A-6). 

 
The main updates in the Version 3 model are summarized as follows: 
 
• More detailed log analyses and the newly reprocessed 2-D and 3-D seismic data. 
 
• An updated structural model developed by Spectra Energy’s Geologic Characterization 

Team to include a better definition of the reef edge, formation tops and isopachs, faults, 
and features which create a structural trap. 

 
• Heterogeneous reservoir properties, such as permeability and porosity, based on a more 

detailed understanding of their distribution throughout the model, not only vertically, 
but also laterally.  

 
Three to six injection wells were utilized in the Version 3 model simulations. Most were 

focused on an area located more than 5 km west from the original Well C-61-E, although there 
were a few cases run around the original c-61-E for more comparison. Injection and CO2 plume 
migration simulations were conducted under a variety of different injection locations and 
operational scenarios (Appendixes C and E of the main report). 
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BASE CASE AND INITIAL SCENARIO EXPLORATIONS 
 
 

INTRODUCTION 
 
Based on the latest geologic model Version 3, a base case was constructed and scaled up 

for scenarios of initial exploration which includes variations of permeability on cap rock and 
reservoir, fault transmissibility, and vertical to horizontal permeability ratio (Table 1 of the main 
report). The purpose of such tests is to explore the effects on CO2 plume and pressure buildup 
because of the various properties listed above and provide insight on potential risks and what 
further areas of reservoir investigation should be undertaken to more accurately determine the 
permeabilities and fault transmissibility for future modeling and risk assessments.  

 
The geologic model of the Version 3 Model was clipped from an original area of 2030 to 

967 km2 (Figure B-1). Three proposed CO2 injection wells (c-18-E, c-47-E, and d-36-E) were 
used in each of the five simulations (Table 1 of the main report). Each test case scenario is 
described in detail below.  

 
 

TEST CASE SCENARIO 1: BASE CASE, WITH AND WITHOUT CO2 INJECTION  
 
The purpose of the Scenario 1 base case was to monitor the contact between the injected 

CO2 plume and the Clarke Lake Slave Point A and B gas pools with 50 years injection and  
50 years postinjection. As illustrated in Figures B-1 and B-2, the results showed that injected 
CO2: 

 
 Reaches the B pool after approximately 25 years of injection and then keeps on 

contaminating the B pool. 
 

 Has not reached the A pool 100 years after injection is initiated.  
 

For example, a comparison of simulated gas per unit area (i.e., the CO2 plume) between 
models with and without CO2 injection shows that gas per unit area increases near the injection 
locations but does not propagate to the Clarke Lake Slave Point A gas pool during the 5-, 25-, 
50-, or 100-year time intervals  (Figure B-2). 

 
The results also indicate that there is a potential risk for the CO2 plume to contact the 

Clarke Lake Slave Point B gas pool after approximately 25 years of injecting and contact the 
Slave Point A gas pool over a longer time interval, e.g., 500 years after injection (Figure B-3); 
however, these time frames far exceed the estimated productive life of these pools. 

 
The injection well bottomhole pressure (BHP) profiles over time are shown in Figure B-4. 

As evident from this figure, there was an increase of approximately 4500 kPa in BHP (i.e., still 
below the maximum sandface injection pressure estimated at 80% of the estimated fracture 
gradient) near the injection wells at the end of CO2 injection in year 2061 (after 50 years of  
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PREDICTIVE SIMULATIONS BEFORE HISTORY MATCHING 
 
 

INTRODUCTION 
 
To address the differences between injecting in and around well c-61-E as compared to the 

location in and around c-47-E, ten test cases were designed and implemented (Table 2 of the 
main report). For all simulation runs, the kv/kh ratio was 0.2, fault transmissibility was 1.0, and 
injection rates were 120 MMscf/d.  

 
Cases 1–4 modeled three injection wells at 25- and 50-year injections, assuming base case 

reservoir permeability (the same base case as was used above). 
 
Cases 5 and 6 assumed low permeability near c-47-E and required a facies adjustment (i.e., 

decreasing permeability within model domains for a particular facies) and a wellbore adjustment 
(i.e., increasing the number and location of injection wells from three to six). These cases are 
geared toward seeing the impacts of a lesser quality reservoir overall and far less permeable 
section in the Slave Point so upward movement of the CO2 is limited. The facies adjustments 
based on the domains are described below. One example of facies adjustments based on domains 
is shown in Figure C-1. 

 
 Facies adjustments only applied to the facies/domains within the graben and on the west 

side of the graben where c-47-E is planned (i.e., the rest of the facies remains base 
case). 

 
 Upper Slave Point domains: 

– Domain 2A was reduced to 50 mD. 
 

– Domain 2B was reduced to 1 mD. 
 

– Domain 5 was reduced to 25 mD for the higher-permeability streaks and 0.1 mD for 
the lower-permeability streaks (Domain 5 is interfingering). 

 
– Domains 8 (back reef) and 9 (shale basin) were not changed from the base case. 

 
 Lower Slave Point domains: 

- Domain 2A was reduced to 50 mD. 
- Domain 2B was reduced to 1 mD. 
– Domains 8 (back reef) and 9 (shale basin) were not changed from the base case. 

 
 Sulphur Point domains: 

– Domain 1 was reduced to 100 mD. 
 

– Domain 5 was reduced to 25 mD for the higher-permeability streaks and 0.1 mD for 
the lower-permeability streaks (Domain 5 is interfingering). 
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the graben feature in the simulation runs. It will be important to get a much improved 
understanding of the structure via planned 3-D seismic survey. In addition, the double-fault 
graben may have a transmissibility of less than 1.0 as per the cases in which situation the graben 
would restrict/slow down CO2 plume migration to the east. It is to be noted that, in the 50-year 
injection scenario, the CO2 plume is starting to migrate across the graben but not reaching the 
Slave Point B pool, so understanding the structure and the fault transmissibility is important. 

 
The highest bottomhole pressure (BHP) for both cases is less than 25,000 kPa  

(Figure C-6). 
 
 

SIMULATION CASES 3 AND 4 
 
Simulation Cases 3 and 4 were the 25- and 50-year injection scenarios, respectively, in and 

around c-61-E, assuming the base case reservoir properties (Table 2 of the main report). Both 
models were run for 100 years to evaluate 75 and 50 years postinjection migration of injected 
CO2, respectively. The results show that the CO2 plume with either 25 years of injection  
(Figures C-7 and C-8) or 50 years of injection (Figures C-9 and C-10) did come in contact with 
Clarke Lake Slave Point A or B gas pools within 100 years from the beginning of injection. This 
would be a higher risk area to inject the large volume of 120 MMcf/d than the c-47-E area.  

 
The highest BHP for Case 3 was less than 25,000 kPa. The highest BHP for Case 4 was 

between 25,000 and 26,000 kPa (Figure C-11). Both of these cases suggest that injecting into the 
c-61-E area would create a higher pressure situation than Cases 1 and 2 injecting at the c-47-E 
area. 

 
 

SIMULATION CASES 5 AND 6 
 
Simulation Cases 5 and 6 were the 25- and 50-year injection scenarios, respectively, in and 

around c-47-E, assuming the lower-permeability facies as described before (Figure C-1 and 
Table 2 of the main report). Both models were run for 100 years to capture 75 and 50 years 
postinjection migration of injected CO2, respectively. Because of the low permeability of the 
Sulphur Point and Slave Point Formations in the c-47-E area in these cases, the CO2 plume is 
much larger where it migrates much more laterally in the c-47-E area, and once it gets past the 
graben into the base case conditions reservoir, then it moves more vertically and laterally.  End 
results is that in the low permeability cases described, the CO2 plume covers a larger area to a 
greater extent than in the base cases, which causes the CO2 plume to come in contact with Clarke 
Lake Slave Point A or B gas pools within 100 years from the beginning of injection  
(Figures C-12–C-15). This is a potential risk so it is important to understand the reservoir rock in 
the area of c-47-E by drilling and testing a well and shooting a 3-D seismic survey in this area. 

 
Because of the low permeability of the injection region, the target CO2 injection rate 

cannot be met even if the BHPs reach the maximum constraint of 28,000 kPa (Figure C-16 and 
Table C-1). Therefore, assuming the lower-permeability facies, the total injected gas for wells in 
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and around c-47-E is lower than the target injection volume. This means more wells would be 
required and properly spaced to minimize injection well interference issues.  

 
 

SIMULATION CASES 7 AND 8 
 
Simulation Cases 7 and 8 were the 25- and 50-year injection scenarios, respectively, in and 

around c-61-E, assuming the injection at two different well locations (Table 2 of the main 
report). The results show that the CO2 plume with either 25 years of injection (Figures C-17 and 
C-18) or 50 years of injection (Figures C-19 and C-20) may come in contact with Clarke Lake 
Slave Point A or B gas pools within 100 years from the beginning of injection. To achieve the 
target injection rate, the BHPs exceed the maximum constraint of 28,000 kPa (Figure C-21). As 
exceeding the maximum sandface injection pressure would not be permitted by the regulator, the 
BHP would be curtailed to the permitted maximum, and the entire volume would not be able to 
be injected.   

 
 

SIMULATION CASES 9 AND 10 
 
Simulation Cases 9 and 10 were designed to increase vertical well perforations for the 

target CO2 injection rate that cannot be met even if the BHPs reach the maximum constraint of 
28,000 kPa (Table C-1 and Figure C-16) in Cases 5 and 6 because of the low permeability of the 
injection region. With more perforations, more sour CO2 can be injected than the ones in Cases 5 
and 6, and the BHPs are less than the ones in Cases 5 and 6. Particularly, for 25 years injection, 
Cases 5 and 9, the expected sour CO2 can be fully injected (the reference) while the amount 
increases from 93.5% to 98.7% for 50 years injection by comparing Cases 6 and 10 (Figure C-22 
and Table C-1). The BHPs were never beyond the maximum limitation of 28,000 kPa for Cases 
9 and 10 (Figures C-23 and C-24). The areal and cross-sectional views of the gas plume for 
Cases 9 and 10 are shown in Figures C-25–C-28. 
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Table C-1. Comparisons of Injected Sour Gas Volume of Cases 5, 6, 9, and 10 

Cases  Volume Comparisons 

  25 years (m3) 50 years (m3) 
Fully Injected (reference) 3.08307E + 10 6.24593E + 10 
Case 5 (25 years) 2.99646E + 10   
Case 6 (50 years)   5.83754E + 10 
Percentage (over fully injected) 97.19 93.46 
Case 9 (25 years) 3.08307E + 10   
Case 10 (50 years)   6.16651E + 10 
Percentage (over fully injected) 100.00 98.73 
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MODEL OPTIMIZATION AND VALIDATIONS (HISTORY MATCHING) 
 
 

DYNAMIC MODELING WORKFLOW PROCESS 
 
The workflow process that has been proposed by the Energy & Environmental Research 

Center (EERC) for this dynamic modeling study includes three optimization techniques (grid-
size sensitivity analysis, numerical tuning, and properties/parameters sensitivity analysis), which 
are followed by history matching for model validation and predictive simulations (Figure 2 of the 
main report). A brief discussion on the optimization techniques and history matching is provided 
below. 

 
Optimization Techniques 
 
Each of the three optimization techniques improves the overall efficiency of dynamic 

modeling by reducing the computing power and time required for a particular simulation run. 
Details of each optimization technique are presented as follows. 

 
 Grid-Size Sensitivity Analysis 
 
Grid-size sensitivity analysis compares various model grid sizes so that the coarsest mesh 

size possible can be utilized while still producing reasonable model outputs. For the Fort Nelson 
carbon capture and storage (CCS) project, four grid resolutions scaled up from the geologic 
model Version 3 were examined: 

 
Very fine: 200 × 200 meters; total 2,061,965 cells 
Fine: 250 × 250 meters; total 1,420,668 cells (69% of the very fine) 
Medium: 300 × 300 meters; total 1,211,280 cells (59% of the very fine) 
Coarse: 400 × 400 meters; total 601,524 cells (29% of the very fine) 
 

After testing, the coarse grid resolution was found to be capable of producing reasonable 
results as compared to the other finer grid resolutions. Thus the 400 × 400-meter grid resolution 
was chosen for further simulations in this project. 

 
 Numerical Tuning 
 
The numerical tuning technique was used to optimize the numerical settings for increasing 

the speed of the simulation runs. In the case of the Fort Nelson CCS project, various numerical 
parameters such as pressure change, saturation change, and the tolerance of convergence over 
each time step were tracked to tune the integrated settings for producing the lowest optimization 
critical points (Griffith and Nichols, 1996; Hutchinson, 1989; LeDimet et al., 1995). The 
optimization critical points used in the project included material balance error, central processing 
unit (CPU) time, and solver failure percent. The original time spent on a single job with 400 × 
400-meter grid resolution prior to numerical tuning was more than 60 hours for a 100-year 
simulation period. After numerical tuning, depending on the simulation scenario, up to 40% 
reduction in the running time was achieved. 

 



 
 
Sen

simulatio
constant.
Once the
are comp
output. 

 
A s

Optimiza
allowed t
were dete
the rest o
were then
variabilit

 
A p

variables
feasibility
showed 
permeabi
kegcl3, 
bottomho
coefficien
Table D-

 
 

Propertie

nsitivity ana
on by varyin
 This is foll

e sensitivity 
pared and a

sensitivity a
ation and U
to fluctuate 
ermined to b
of the simula
n compared 
ty in the exis

preliminary p
s for a given
y project stu
that the mo
ility functio
ng1, etc.); 

ole pressure
nts); and ga

-1). 

Figure D

es/Paramete

alysis is a me
ng one vari
lowed by an
analysis is c

analyzed to 

analysis was 
Uncertainty 

over realisti
be insignifica
ation runs. T

to available
sting data. 

properties se
n simulation.
udy area and
ost sensitive
n for phase
vertical/ho
(BHP) (inj

s and water 

D-1. Version
for 

ers Sensitivit

ethod used to
able over a
n examinatio
completed f
determine 

conducted u
Assessment
ic ranges to 
ant were set 

The values th
e data sourc

ensitivity an
 The ranges
d known ga
e parameter
es that are d
rizontal hy
BHP); capil
residual sat

n 3 model pa
matching ga

D-2 

ty Analysis

o determine 
a realistic ra
on of the ne
for each vari
the most in

using CMG’
t Tool (CM

produce a v
to a constan

hat were alte
es to ensure

alysis was p
s were based
as reservoirs 
s were perm

determined b
draulic con
llary entry p
turation (swc

arameters ran
as production

the most inf
ange while s
et effect of t
iable used in
nfluential va

’s Computer
MOST). The

valid history
nt value (sele
ered during t
e that they re

performed to
d on the geol
 in the regio
meability m
by end poin
nductivity a
pressure (de
con1 and sg

nked accord
n well data.

fluential vari
setting all o
these change
n the simula
ariables affe

r-Assisted H
e significant
y match, wh
ected from a
the history-m
emained wit

o determine t
logy of the F
on. The prel

multiplier (P
nts and coef
anisotropy (
etermined by
con1) (Figu

ding to their s

iables for a g
other values
es on the re
ation model,
ecting the m

History Matc
t variables 

hile variables
available data
matching exe
thin the exp

the “heavy h
Fort Nelson 
liminary ana

PermR1); rel
fficients (suc
(kv/kh); inje
y end points

ures D-1 and

 
sensitivity 

 

given 
 to a 

esults. 
, they 
model 

ching, 
were 

s that 
a) for 
ercise 

pected 

hitter” 
CCS 

alysis 
lative 
ch as 
ection 
s and 

d D-2, 



 
 
His
 
Th

for histor
the Versi
the simul

 
 
 
His

(total 92 
13 suspen
Well c-6
used for 
93 wells 
of the we
1961 to 2
industry 
(www.di

 
An

historical
performe
as follow

Figure D-2

story Match

e Version 3 
ry matching
ion 3 model
lated results

History-M

storical data
wells). The 
nded wells, 

61-E was als
history matc
penetrate th
ells did not 
2010. GeoVi

informatio
vestco.com/

n in-house p
l data to fit 
ed in the fina
ws. 

2. Version 3 
for m

hing 

static geolo
. Once optim
l was validat
. 

Matching V

a were colle
85 producti

and nine und
so incorpora
ching. All 93

he Sulphur P
have compl
ista is a data
on for A
/ Solutions/E

program wa
the data for

al iteration to

model param
matching wa

gical model 
mized for gri
ted by matc

Validation Da

cted from 8
ion wells inc
defined well

ated; thus a 
3 wells pene
oint Formati
lete data rec
abase develo
lberta, Bri

Engineering/

as developed
rmat suitable
o obtain a re

D-3 

 
meters ranke
ater productio

(Appendix 
id size, num
hing of histo

ata 

85 productio
clude 42 cur
ls. In additio
total of 93 w

etrate the Sla
ion in the Fo

cords in Geo
oped by Dive
itish Colum
Software/Ge

d and used
e for the sim
easonable hi

ed according
on well data

A) was used
merical tuning

orical produ

on wells and
rrently active
on to the hist
wells (Table
ave Point Fo
ort Nelson C
oVista throu
estco which 
mbia, Sask
eoVista-%28

to sort, filt
mulator. A to
istory match

g to their sen
a.  

d to build th
g, and prope

uction and pr

d seven wate
e wells, 21 a
torical data, 
e D-2 and F
ormation, an
CCS project 
ughout the en

provides cu
katchewan, 
81%29.aspx)

ter, and ref
otal of 494 

h. The results

 

nsitivity  

e dynamic m
erties/param
ressure data

er disposal 
abandoned w
information 

Figure D-3)
nd 29 out of 
study area. M
ntire period 

urrent and rel
and Man

). 

format all o
simulations 
s are summa

 

model 
meters, 
a with 

wells 
wells, 
from 
were 
these 

Many 
from 

liable 
nitoba 

of the 
were 

arized 



 

 

D
-4 

Table D-1. Parameters/Properties That Were Tracked During Sensitivity Analysis 
Variables Descriptions 
PermR1 Permeability multiplier 
kv/kh Vertical and horizontal permeability ratio 
ProdBHP BHP of production wells, kPa 
Production Skin Skin of production wells 
Injection BHP, kPa BHP of injection wells, kPa 
Injection Skin Skin of injection wells 
Trans Fault transmissibility 
HYSKRG1 Relative permeability hysteresis of the rock with permeability larger than 1 mD 
HYSKRG2  Relative permeability hysteresis of the rock with permeability range 0.01 to 1 mD 
HYSKRG3 Relative permeability hysteresis of the rock with permeability less than 0.01 mD 
End Points Swcon1 to Swcon3 Connate water saturation 

Swcrit1 to Swcrit3 Critical water saturation 
Sgcrit1 to Sgcrit3 Critical gas saturation 
Sgcon1 to Sgcon3 Connate gas saturation 
Krgcl1 to Krgcl3 Gas relative permeability at connate water 
Krocw1 to Krocw3 Water relative permeability at connate gas 

Exponents and 
Coefficients 

nw1 to nw3 Exponents for water relative permeability curves 
ng1 to ng3 Exponents for gas relative permeability curves 
Excp1 to Excp3 Exponents for capillary pressure curves 
Con1 to Con3 Coefficient for capillary pressure curves 
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Table D-2. Wells Used for History Matching 
Well ID Well Type 

 

Well ID Well Type 

 

Well ID Well Type 
00/A-005-A/094-J-
15/0 

Production well 
00/B-053-J/094-J-
10/0 

Production well 
00/C-078-I/094-J-
10/0 

Production well 

00/A-010-D/094-J-
16/0 

Production well 
00/B-061-G/094-J-
10/0 

Production well 
00/C-078-K/094-J-
10/0 

Production well 

00/A-030-A/094-J-
15/2 

Production well 
00/B-069-L/094-J-
09/0 

Disposal well 
00/C-080-F/094-J-
10/0 

Production/disposal 
well 

00/A-030-A/094-J-
15/3 

Production well 
00/B-070-I/094-J-
10/0 

Production well 
00/C-080-L/094-J-
09/0 

Production well 

00/A-051-J/094-J-
10/0 

Production well 
00/B-072-L/094-J-
09/0 

Production well 
00/C-085-I/094-J-
10/0 

Production well 

00/A-052-J/094-J-
10/0 

Production well 
00/B-073-L/094-J-
09/0 

Production well 
00/C-087-I/094-J-
10/0 

Production well 

00/A-053-J/094-J-
10/0 

Production well 
00/B-074-G/094-J-
10/2 

Production well 
00/C-088-F/094-J-
10/0 

Production/disposal 
well 

00/A-055-J/094-J-
10/0 

Production well 
00/B-075-H/094-J-
10/0 

Production well 
00/C-089-F/094-J-
10/0 

Disposal well 

00/A-056-J/094-J-
10/0 

Production well 
00/B-076-G/094-J-
10/0 

Production well 
00/C-092-G/094-J-
10/3 

Production well 

00/A-061-F/094-J-
10/0 

Production well 
00/B-078-G/094-J-
10/2 

Production well 
00/C-092-I/094-J-
10/0 

Production well 

00/A-065-G/094-J-
10/0 

Production/disposal 
well 

00/B-078-I/094-J-
10/0 

Production well 
00/C-092-L/094-J-
09/0 

Production well 

00/A-065-L/094-J-
09/0 

Production well 
00/B-088-L/094-J-
09/0 

Production well 
00/C-094-L/094-J-
09/0 

Production well 

00/A-068-H/094-J-
10/0 

Production well 
00/B-091-G/094-J-
10/0 

Production well 
00/C-096-I/094-J-
10/0 

Production well 

00/A-074-G/094-J-
10/0 

Disposal well 
00/B-092-G/094-J-
10/0 

Production well 
00/C-099-K/094-J-
10/2 

Production well 

 
 

Continued . . .  
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Table D-2. Wells Used for History Matching (continued) 
Well ID Well Type  Well ID Well Type  Well ID Well Type 
00/A-075-L/094-J-
09/0 

Production well  
00/B-097-L/094-J-
09/0 

Production well  
00/C-100-L/094-J-
09/0 

Undefined well 

00/A-077-L/094-J-
09/0 

Production well 

 

00/B-098-L/094-J-
09/3 

Production well 

 

00/C-100-L/094-J-
09/2 

Production well 

00/A-081-G/094-J-
10/0 

Production well 
00/C-008-D/094-J-
16/0 

Undefined well 
00/D-013-J/094-J-
10/2 

Production well 

00/A-083-G/094-J-
10/0 

Production well 
00/C-020-I/094-J-
10/0 

Production well 
00/D-021-J/094-J-
10/0 

Production well 

00/A-089-K/094-J-
10/0 

Production well 
00/C-029-I/094-J-
10/0 

Production well 
00/D-029-K/094-J-
09/0 

Production well 

00/A-090-F/094-J-
10/0 

Production well 
00/C-043-J/094-J-
10/0 

Production well 
00/D-031-K/094-J-
10/0 

Production well 

00/A-092-I/094-J-
10/0 

Production well 
00/C-050-K/094-J-
09/0 

Production well 
00/D-037-J/094-J-
10/2 

Production well 

00/A-094-I/094-J-
10/0 

Production well 
00/C-052-F/094-J-
10/0 

Production well 
00/D-048-L/094-J-
09/0 

Disposal/undefined 
well 

00/A-099-F/094-J-
10/0 

Production well 
00/C-054-F/094-J-
10/0 

Production well 
00/D-051-G/094-J-
10/2 

Production well 

00/B-006-D/094-J-
16/0 

Production well 
00/C-056-L/094-J-
09/0 

Production well 
00/D-054-G/094-J-
10/2 

Production well 

00/B-008-D/094-J-
16/2 

Undefined well 
00/C-057-I/094-J-
10/0 

Production well 
00/D-066-G/094-J-
10/0 

Production well 

00/B-008-I/094-J-
10/0 

Production well 
00/C-066-H/094-J-
10/0 

Production well 
00/D-072-G/094-J-
10/0 

Production well 

00/B-010-D/094-J-
16/0 

Production well 
00/C-066-L/094-J-
09/3 

Production well 
00/D-072-L/094-J-
09/0 

Production well 

00/B-018-I/094-J-
10/0 

Production well 
00/C-069-H/094-J-
10/0 

Production well 
00/D-091-L/094-J-
09/0 

Production well 

 
 

Continued . . .  
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Table D-2. Wells Used for History Matching (continued) 
Well ID Well Type  Well ID Well Type  Well ID Well Type 
00/B-026-J/094-J-
10/0 

Production well 

 

00/C-069-I/094-J-
10/2 

Production well 

 

00/D-092-L/094-J-
09/0 

Production well 

00/B-029-A/094-J-
15/2 

Production well 
00/C-073-I/094-J-
10/0 

Production well 
00/D-094-I/094-J-
10/2 

Production well 

00/B-046-J/094-J-
10/0 

Production well 
00/C-075-L/094-J-
09/0 

Production well 
00/D-096-L/094-J-
09/0 

Production well 

00/B-048-I/094-J-
10/0 

Production well 
00/C-076-H/094-J-
10/0 

Undefined well 
02/D-088-L/094-J-
09/0 

Production well 
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 History-Matching Results 
 
After 494 history matching simulation runs, an asymptotical convergence was achieved. 

Upon convergence, the global objective function error between the simulation runs and the 
historical data for gas and water production and water disposal are 0.49%, 7.03%, and 0.43% 
respectively. The matched wells (total 92 wells) were shown in Figure D-3. Correspondingly, 
Figures D-4–D-6 show a comparison of the historical and simulation data for cumulative gas 
production, cumulative water disposal, and cumulative water production. The history-matching 
results indicate a good match for gas production and water disposal. BHP of all wells is close to 
scatter points of the historical data. However, only results of the top ten highest gas production 
wells (Table D-3 and Figure D-7) were presented in this report (Figures D-8–D-27).  
 

The purpose of the history match was to help verify site characterization or identify where 
there are issues with the site characterization. The history match also creates the pressure sinks in 
the reservoir model due to the effects of gas production and water disposal which, in turn, will 
allow for more accurate simulation of the effects of a CCS operation. 

 
The fieldwide distributions of the initial pressure (before history matching) and the current 

measured pressure are shown in Figures D-28 (1960 time frame) and D-30 (2010 time frame). As 
shown, there is a pressure sink in the reservoir model as a result of the significant gas production 
and water disposal operations. Further, it can be seen that the largest pressure drop is in the area 
of the Slave Point A gas pool which has produced some 1.8 Tcf of raw gas. Secondly, the 
pressure sink effects ripple outward in the reef bank area, but the pressure drop is less with more 
distance away from the Slave Point A production. 

 
The simulated pressure distributions obtained after history matching (Figure D-29) in the 

injection side regions were found to be lower than the measured field pressures (Figure D-30).  
This can be attributed to the nonavailability of production/injection wells out of the gas pools.  

 
To further match the pressure in these regions, especially the front of the reefs and 

injection regions, two methods were used: 
 

• Boundary conditions: introduction of new boundary conditions, especially the settings 
of the aquifer on boundaries (Figure D-31).  

 
• Lower-permeability barrier: the barrier was used to mimic the low permeability barrier 

between Gas Pools A and B for potential geological insight (Figure D-32).   
 
It appears that the results with aquifer boundaries and lower permeability barriers show a 

reasonable match of the pressure profile (Figure D-33) in the front of reefs and injection region 
even though the transient area between injection and gas pools does not. 

 
A reasonable history match obtained for production and pressure data, particularly where 

historical production and disposal data are available, has resulted in improved confidence in the 
geologic model. Achievement of a satisfactory global objective function to match historical data 
will yield more reliable behavior of CO2 injection during predictive simulations. This would also 
help in obtaining a more accurate assessment of the site for better prediction and risk analysis. 
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The availability of more information in the rest of the region away from the gas pools 
(such as the injection region) would definitely increase the confidence of further site assessment 
for prediction and risk analysis.   
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PREDICTIVE SIMULATIONS AFTER HISTORY MATCHING 
 
 
This appendix provides the results of the predictive simulations based on the dynamic 

simulation models that exhibited a reasonable history match. The top two “best” matching cases 
were selected for conducting predictive simulations. Water recycle (collection of produced water 
from the production well being injected into the reservoir) was considered in all of these 
predictive runs. 

 
 

WATER RECYCLE 
 
Based on the analysis of historical data, active production wells were kept on operation 

status (open or shut in) beginning July 2010 to the date when the gas production rate was less 
than 2500 m3/day under the minimum bottomhole pressure (BHP) limits. As of July 2010, there 
were a total of 38 active wells (Figure E-1 and Table E-1). Based on the relative distance to the 
water disposal wells a-48-L, c-89-F, and a-65-G (Table E-1 and Figure E-2), these wells were 
divided into three groups, namely, TWP_D048L, TWP_C089F, and TWP_A065G for gas 
production control and water recycle. Examples of water recycle using available water disposal 
wells are shown in Figures E3–E8. The gas production rate control under the minimum BHP 
limits with water recycle is shown in Figures E9–E12.  

 
 

PREDICTIVE SIMULATIONS 
 
To compare the effects of injection in and around both injection locations (Well c-47-E and 

Well c-61-E) on the gas plumes, eight test cases were designed and implemented (Table 3 of the 
main report). The first four cases are based on History-Matching No. 1 and the last four cases are 
based on History-Matching No. 2. All cases include two injection periods of 25 and  
50 years. The results indicate that the gas plumes in injection location c-47-E did not contact the 
gas pools. However, in the case of injection location c-61-E, the gas plumes did contact the gas 
pools. The simulated BHPs for the c-47-E location were found to be 1000 to 3000 kPa lower 
than the BHPs obtained for the c-61-E location. The detailed results for water recycle, BHPs, 
areal view of gas plumes (gas per area unit), areal view of saturation at the top of Upper Slave 
Point, cross-sectional view of gas plumes, and pressure distribution over time are shown in  
Figures E-13–E-91.  

 
 

COMPARISONS OF PRE- AND POST-HISTORY MATCHING 
 
The cases of pre- and post-history matching with a 50-year injection period in both 

injection locations were also compared. Cases 1 and 3 belong to History-Matching No. 1 and 
Cases 5 and 7 belong to History-Matching No. 2. For Cases 1 and 5, injection was done at the  
c-47-E location, whereas Cases 3 and 7 deal with injection at location c-61-E. These four cases 
were compared with the cases before history matching. A comparison of results in the case of  
location c-47-E shows that the gas plumes obtained post-history matching are bigger than the 
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Table E-1. Grouped Active Production Wells 

 
 
 
 

 
 

No. Wells Groups No. Wells Groups 
1 00_A-005-A_094-J-15_0 TWP_D048L 20 00_D-096-L_094-J-09_0 TWP_D048L
2 00_A-051-J_094-J-10_0 TWP_D048L 21 00_A-090-F_094-J-10_0 TWP_C089F
3 00_A-056-J_094-J-10_0 TWP_D048L 22 00_A-068-H_094-J-10_0 TWP_A065G
4 00_A-065-L_094-J-09_0 TWP_D048L 23 00_A-081-G_094-J-10_0 TWP_A065G
5 00_A-092-I_094-J-10_0 TWP_D048L 24 00_A-083-G_094-J-10_0 TWP_A065G
6 00_B-008-D_094-J-16_2 TWP_D048L 25 00_B-018-I_094-J-10_0 TWP_A065G
7 00_B-048-I_094-J-10_0 TWP_D048L 26 00_B-075-H_094-J-10_0 TWP_A065G
8 00_B-053-J_094-J-10_0 TWP_D048L 27 00_C-020-I_094-J-10_0 TWP_A065G
9 00_B-072-L_094-J-09_0 TWP_D048L 28 00_C-029-I_094-J-10_0 TWP_A065G
10 00_B-088-L_094-J-09_0 TWP_D048L 29 00_C-052-F_094-J-10_0 TWP_A065G
11 00_B-098-L_094-J-09_3 TWP_D048L 30 00_C-054-F_094-J-10_0 TWP_A065G
12 00_C-057-I_094-J-10_0 TWP_D048L 31 00_C-066-H_094-J-10_0 TWP_A065G
13 00_C-066-L_094-J-09_3 TWP_D048L 32 00_C-069-H_094-J-10_0 TWP_A065G
14 00_C-073-I_094-J-10_0 TWP_D048L 33 00_C-092-G_094-J-10_3 TWP_A065G
15 00_C-078-I_094-J-10_0 TWP_D048L 34 00_D-013-J_094-J-10_2 TWP_A065G
16 00_C-087-I_094-J-10_0 TWP_D048L 35 00_D-021-J_094-J-10_0 TWP_A065G
17 00_D-037-J_094-J-10_2 TWP_D048L 36 00_D-054-G_094-J-10_2 TWP_A065G
18 00_D-072-L_094-J-09_0 TWP_D048L 37 00_D-066-G_094-J-10_0 TWP_A065G
19 00_D-094-I_094-J-10_2 TWP_D048L 38 00_D-072-G_094-J-10_0 TWP_A065G
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