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EERC DISCLAIMER 
 
 LEGAL NOTICE This research report was prepared by the Energy & Environmental 
Research Center (EERC), an agency of the University of North Dakota, as an account of work 
sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory 
(NETL). Because of the research nature of the work performed, neither the EERC nor any of its 
employees makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement 
or recommendation by the EERC. 
 
 
ACKNOWLEDGMENT 
 
 This material is based upon work supported by DOE NETL under Award No. DE-FC26-
05NT42592. 
 
 
DOE DISCLAIMER 
 
 This report was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government, nor any agency thereof, nor any of 
their employees, makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned rights. 
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breakthrough at the observation well in a 13.1-mi2 area. The second scenario, which will be 
detailed in a subsequent report, encompasses a 3670-mi2 area. As part of this investigation, core 
plug analysis and relative permeability studies were also conducted on samples provided from 
the injection well core. Information from these analyses was integrated into the construction of 
the geocelluar model and the dynamic simulations and will be provided in a subsequent report. 
 
 A total of nine simulation cases were run to investigate factors such as boundary 
conditions, injection rates, and time length. The injection duration for these scenarios was set at 
1, 5, and 50 years, and the injection rates were set at 1 Mt/yr and 0.3 Mt/yr. Although the 
maximum injection rate in the model was set as 1 Mt/yr, the maximum attained in the model was 
0.73 Mt/yr because of bottomhole pressure limitations. The total mass of CO2 injected in the  
50-year cases ranged from 1.5 to 33.6 Mt, with the large range in values a result of changing the 
boundary conditions from closed to open. CO2 storage values for the 5-year cases range from  
1.5 to 3.6 Mt, and those for the 1-year cases range from 0.3 to 0.7 Mt. 
 
 An important aspect of this investigation with regard to potential monitoring efforts is the 
timing of CO2 breakthrough at the observation well. The earliest breakthrough occurred between 
10 and 15 days at the higher injection rate (0.73 Mt/yr), and the projected CO2 path follows the 
top reservoir zone of the Deadwood Formation. At the lower injection rate (0.3 Mt/yr), 
breakthrough happens between 25 and 30 days after injection and follows the same path. Overall, 
CO2 breakthrough in most of the reservoir zones happens in about 3 months for the low injection 
rate; this time is reduced to 45 days at the higher rate. Based on the information derived from the 
various simulation cases, the CO2 breakthrough will most likely happen in the first month of 
injection regardless of the injection rate and assumptions of relative permeability.  
 
 Based on the simulation results, the storage of CO2 in the study area using the existing 
two-well configuration is feasible, depending on the volume of CO2 that need to be injected and 
stored from the neighboring Boundary Dam power plant. Generally, the maximum injectivity for 
the current injection well could reach 0.73 Mt/yr based on the geological characterization of the 
study area. However, this could be improved through optimization operations such as adding 
additional injection wells, utilizing formation water extraction wells, and/or the use of horizontal 
injection wells. All of these additional optimization techniques will be investigated in the next 
phase of work and reported on in a subsequent report. In addition, the larger regional-size model 
will be utilized to provide better insights with respect to a commercial-scale injection rate over a 
long period of time. Finally, future work will also include geomechanical, geochemical, and 
geothermal behaviors and integrate them throughout the entire modeling and simulation process 
to investigate the role these variables may play in CO2 storage at the Aquistore site. 
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4 

model into 12 traceable zones, including six sand units and six shale units throughout the 
regional study area. Total porosity and shale volume was then stochastically populated 
throughout the model, with each zone using the upscaled logs and variogram ranges determined 
through data analysis. Effective porosity was then calculated for each cell, and permeability was 
populated based on its empirical relationship with porosity. The model was populated with 
additional reservoir properties including pressure and temperature, which are important in 
calculating CO2 density at reservoir conditions and for inputs into the dynamic simulation model. 
After an uncertainty analysis was performed, the model was clipped to the area of the 3-D 
seismic survey, where structural resolution is higher, and the workflow was applied again for 
further optimization. 
 
 
PETROPHYSICAL ANALYSIS 
 
 Petrophysical analysis on well logs was performed using Schlumberger’s Techlog on  
15 wells. These wells include the Aquistore observation and injection wells, three wells in North 
Dakota, and ten wells in Saskatchewan. The workflow for the petrophysical analysis included 
log quality control, gamma ray normalization, calculation of both Vshale and total porosity, and 
a quality check of the results in comparison to the core results. 
 
 Total porosity and Vshale were calculated for the 15 wells using the neutron density and 
gamma ray methods, respectively. Porosity results were quality-checked and calibrated using 
routine core analysis data from sidewall and whole core (Figure 3). Vshale was calculated using 
the normalized gamma ray logs and readings of 215 and 10 for the shale and matrix, 
respectively. The calculation underwent a Monte Carlo analysis to determine uncertainty in these 
values, which resulted in a mean value for Vshale from the 100 iterations. 
 
 These Vshale results were useful in subdividing the reservoir into sand and shale zones. 
Furthermore, effective porosity was calculated using results of the Vshale and total porosity  
(Eq. 1). A porosity of 14% was determined for shale and was further investigated by performing 
an uncertainty analysis on the values and its overall effect on the net-to-gross calculations. 
 
 PHIe = PHIT − (PHITshale * Vshale) [Eq. 1] 
 
Where PHIT is the total porosity, PHIE is the effective porosity, Vshale is the volume of shale, 
and PHITshale is the porosity of the 100% shale matrix. 
 
 
STRUCTURAL ANALYSIS 
 
 The reservoir portion of the model, which is the planned target for CO2 storage, comprises 
the Black Island and Deadwood Formations. These formations consist of alternating layers of 
sand and shale or reservoir and nonreservoir rock. The structural top of the model is the Icebox 
shale, which serves as the top reservoir seal; the structural base of the model is the Precambrian 
basement rock consisting of igneous or metamorphosed rock. As shown in Figure 4, the overall 
structure in the model follows the general structure of the Williston Basin. Any faulting or 
folding structural features that may be present in the regional model are not recognized because 
of the lack of control points.  
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Table 2. Major and Minor Horizontal and Vertical Variogram Ranges for the Calculated 
Properties from the Petrophysical Analysis (the vertical range had some uncertainty and 
was investigated during uncertainty analysis) 
  Variogram Ranges, ft 

Zone 
Upscaled 
Properties Major Minor 

Short 
Vertical 

Long 
Vertical 

Icebox Vshale and PHIT  36,000 36,000 37 75 
Upper Black Island Sand Vshale and PHIT  10,000 10,000 20 30 
Upper Black Island Shale Vshale and PHIT  15,000 15,000 7 20 
Lower Black Island Sand Vshale and PHIT  10,000 10,000 10 80 
Upper Deadwood Nonreservoir Vshale and PHIT  15,000 15,000 10 50 
Deadwood D Sand Vshale and PHIT  10,000 10,000 10 20 
Deadwood D Shale Vshale and PHIT  15,000 15,000 8 25 
Deadwood C Sand Vshale and PHIT  10,000 10,000 10 15 
Deadwood C Shale Vshale and PHIT  15,000 15,000 10 35 
Deadwood B Sand Vshale and PHIT  10,000 10,000 6 12 
Deadwood B Shale Vshale and PHIT  15,000 15,000 8 35 
Deadwood A Sand Vshale and PHIT  10,000 10,000 8 40 

 
 
 A bivariate analysis was also performed using the core porosity and permeability data. A 
crossplot of the data showed an empirical relationship between the Deadwood and Black Island 
sands (Figure 8). The resulting crossplots of the bivariate analysis are used as part of a cloud 
transform to populate permeability throughout the model based on the resulting stochastic 
porosity property. 
 
 
PETROPHYSICAL MODELING 
 

Porosity and Vshale 
 
 The petrophysical results and variograms, determined from data analysis, were used to 
populate the petrophysical properties using a stochastic Gaussian simulation. This simulation 
technique honors both the original histogram data and upscaled well logs, while utilizing the 
variogram to distribute the properties away from the wellbore. Quality assurance and quality 
control of the resulting property distribution were conducted using 3-D visualization and 
statistical review.  
 
 The distribution of total porosity and Vshale properties reveals the lateral and vertical 
heterogeneity throughout the reservoir (Figure 9 and 10). These resulting properties were then 
used to calculate an effective porosity based on a shale porosity of 14%, thus effectively 
removing that portion of porosity containing immovable clay-bound water for accurate fluid flow 
in the simulation. Calculating the effective porosity also is used to help accurately determine 
storage volumes and areas of interconnected reservoir during the optimization process. 
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using a kriging algorithm. The resulting contours show a lateral distribution of the properties but 
lack a vertical component. Vertical gradients of 0.47 psi/ft and 0.1°F/ft were used to populate the 
pressure and temperature properties vertically in the reservoir. 
 

Water Saturation and Salinity 
 
 Because of the complexity of the aquifer spatially and the lack of well control in the 
model, a water saturation of 1 was populated throughout the model, resulting in the absence of 
oil and gas. Although oil and gas are known to present in the basal Cambrian formation, 
determining exactly how much and how they are distributed in the model is a challenge. 
However, water salinity in the model was calculated to determine salinity for the importance of 
CO2 interactions with brine in the dynamic simulation. Salinity values were contoured from 
measurements and salinity determinations by Bachu and others (2011). Salinity values in the 
study area range from 271,000 to 336,000 ppm total dissolved solids. 
 

Uncertainty Analysis and Optimization 
 
 An uncertainty analysis was performed to optimize the model and investigate the 
uncertainty in certain model-building parameters, including shale porosity, variogram range, 
structural interpolation, and net-to-gross reservoir. The results of the uncertainty analysis were 
then ranked accordingly by calculated pore volume, resulting in a low-, mid-, and high-
volumetric case for the amount of pore volume accessible to store the potential injected CO2. The 
selected midvolume case used data for model optimization within the area where the 3-D seismic 
survey was conducted.  
 
 
MODEL REFINEMENT  
 
 The fine-scale model is confined to the extent of the 13.1 mi2 3-D seismic survey area 
centered on the Aquistore observation well and injection well. The regional model was refined to 
a fieldwide model, with the increased structural resolution obtained from the 3-D seismic survey 
(Figure 11). The resolution of the fine-scale model was increased by decreasing the cell sizes 
from 1000 × 1000 ft to 25 × 25 ft. The layering, or vertical resolution, remained the same as in 
the regional scale model.  
 
 The interpreted 3-D seismic survey provided by PTRC identified stratigraphic tops 
throughout the study area for the Icebox, Black Island, Deadwood Formations, and the 
Precambrian surface. The development of the regional-scale model identified 12 distinct 
reservoir and nonreservoir zones present over the region, but these zones are not interpreted in 
the seismic survey. To help capture these zones stratigraphically, the data generated from the 
regional-scale model were integrated into the fine-scale model by creating four pseudowells. 
These wells were placed at the corners of the fine-scale model and given synthetic logs and log 
tops determined from the regional-scale model properties. The stratigraphic tops were then used 
to determine the reservoir and nonreservoir (sand/shale) zones away from the injection and 
observation wells and to capture the vertical heterogeneity in the study area. 
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Table 3. Major and Minor Horizontal and Vertical Variogram Ranges for Upscaled Logs 
from Pseudowells (the vertical range had some uncertainty and was investigated during 
the uncertainty analysis). 
  Variogram Ranges, ft 

Zone Upscaled Properties Major Minor 
Short 

Vertical 
Long 

Vertical 
Icebox Vshale and PHIT  5000 5000 40 80 
Upper Black Island Sand Vshale and PHIT  3000 3000 20 25 
Upper Black Island Shale Vshale and PHIT  5000 5000 10 18 
Lower Black Island Sand Vshale and PHIT  3000 3000 12 90 
Upper Deadwood Nonreservoir Vshale and PHIT  5000 5000 35 80 
Deadwood D Sand Vshale and PHIT  3000 3000 12 25 
Deadwood D Shale Vshale and PHIT  5000 5000 30 50 
Deadwood C Sand Vshale and PHIT  3000 3000 15 25 
Deadwood C Shale Vshale and PHIT  5000 5000 25 50 
Deadwood B Sand Vshale and PHIT  3000 3000 12 20 
Deadwood B Shale Vshale and PHIT  5000 5000 15 30 
Deadwood A Sand Vshale and PHIT  3000 3000 15 80 

 
 
 The upscaling process resulted in a model with 1.3 million cells by changing the lateral 
resolution and maintaining the vertical resolution. To maintain the geologic heterogeneity, local 
grid refinement (LGR) was used over an approximate radius of 10,000 ft around both the 
observation and injection well (Figure 12). The local grid refinement maintains the lateral and 
vertical heterogeneity by keeping the original 25 × 25-ft cell size. Outside of the LGR, the cell 
size was increased to 250 × 250 ft.  
 
 
STATIC STORAGE ASSESSMENT 
 
 The methodology used in this study follows the approach described in DOE Atlas III (U.S. 
Department of Energy Office of Fossil Energy, 2010) which builds on the IEAGHG work of 
Gorecki and others (2009). It is based on the volumetric approach for estimating CO2 storage 
resource potential saline formations. The volumetric equation to calculate the CO2 storage 
resource mass estimate for geologic storage in saline formations is:  
 
 MCO2e = A × h × φ × ρCO2 × E [Eq. 2] 
 
 The total area (A), gross formation thickness (h), and total porosity (φ) terms account for 
the total bulk volume of pore space available. The value for CO2 density (ρ) converts the 
reservoir volume of CO2 to mass. The storage efficiency factor (E) reflects the fraction of the 
total pore volume that will be occupied by the injected CO2. For saline formations, the CO2 
storage efficiency factor is a function of geologic parameters, such as area, gross thickness, and 
total porosity, that reflect the percentage of volume amenable to CO2 sequestration and 
displacement efficiency components that reflect different physical barriers inhibiting CO2 from 
contacting 100% of the pore volume of a given basin or region. Volumetric methods are applied 
when it is generally assumed that the formation is open and that formation fluids are displaced 
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Table 4. CO2 Storage Potential for the Black Island and Deadwood Formations 
in the Area Around the Aquistore Project 
 P10 P50 P90 
Efficiency Factor, % 7.4 14 24 
Regional Scale 1.6 Gt 3.1 Gt 5.3 Gt 
Local Scale 8.4 Mt 15.8 Mt 27.1 Mt 

 
 
DYNAMIC SIMULATION 
 
 To evaluate the targeted saline system, and thus its viability as a potential sink, the 
geocellular model was used as the framework for an assessment of the dynamic storage capacity 
of the system. Static storage resource calculations do not consider the effect of dynamic factors 
such as injection rate, injection pattern, timing of injection, reservoir pressure buildup, and CO2 
movement for risk assessment. Numerical simulation is a method that can be used to validate the 
estimate of the effective storage resource potential of deep saline formations by addressing the 
dynamic CO2 movement during injection.  
 
 Through the dynamic simulation effort, two main objectives were established for this 
project: 1) assess the dynamic storage capacity of the saline system and 2) assess the risk by 
simulating the reservoir performance during CO2 injection and postinjection. To address these 
objectives, two dynamic injection scenarios were designed based on the static geologic model. 
The first scenario is used to determine the injectivity of study area through the simulated 
injection of 0.3 Mt/year to investigate the timing of CO2 breakthrough in the observation well 
and near-wellbore CO2 movement in a fine-scale model (13.1 mi2). The second scenario extends 
the simulation to the 3670-mile2 study region in an effort to optimize the injection and storage 
that will be included in a subsequent report. All of the dynamic simulations were performed 
using Computer Modelling Group Ltd.’s (CMG’s) general equation-of-state modelling (GEM) 
software package (www.cmgl.ca/) on a 184-core, high-performance parallel computing cluster. 
 
 
MODEL SETTINGS 
 
 There are two components in the model: CO2 and brine. The CO2 is allowed to dissolve 
into brine to mimic the nature of the saline system undergoing CO2 injection. The aqueous 
density and viscosity of the fluids were correlated by using the Rowe and Chou (1970) and 
Kestin and others (1981) methods, respectively, with varying temperatures and pressures of the 
saline system over the location and depth. Henry’s law constant was correlated by Harvey’s 
method to determine the solubility of CO2 in the brine (Harvey, 1996). 
 
 The fluid model and rock–fluid settings for the dynamic simulation were based on the 
lithologies of the static geologic model. To test the sensitivity of the system to relative 
permeability, three sets of the relative permeability curves were used in the simulations. The first 
set of relative permeability curves (RPT1) was provided by Schlumberger and was measured by 
an unsteady-state method from core plugs taken at depths of 10,424.9 and 10,621.7 ft which are 
Sample 4 and Sample 14 (Schlumberger Reservoir Laboratories, 2013). The net confining 
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 Although the relative permeability used in Cases 7 and 9 was from Bachu and Adams 
(2011) based on the data derived by the EERC Applied Geology Laboratory, the earliest CO2 
breakthrough still happened between 25 to 30 days after injection, similar to the cases based on 
relative permeability (Figure 23). Based on the information derived from the simulation cases, 
the CO2 breakthrough will most likely happen in the first month of injection, regardless of the 
injection rate and assumptions of relative permeability.  
 
 The primary reason for the relatively short breakthrough time is that the distance between 
the injection well and the observation well is only about 500 ft, and these points are well 
connected via the permeable upper Deadwood sand. More detailed results of CO2 breakthrough 
in the other reservoir zones and the shape of the CO2 plume over time can be found in  
Appendix A (Figures A-1–A-10). 
 

Pressure Differences 
 
 The pressure difference discussed in this report was calculated by the pressure at the 
specific time in the simulation minus the initial pressure to check how much pressure changed 
during CO2 injection or postinjection. Overall, the maximum simulated pressure difference was 
1700 psi in Case 2 with closed boundary conditions, and this value reduces to about 900 psi with 
the open boundary system in Case 3 (Figure A-3, Appendix A). For Case 4 with 5 years of 
injection, the pressure difference is about 1000 psi at the end of injection, and this value 
decreases to 90 psi after 5 years of postinjection (Figure A-6, Appendix A). The results of Case 5 
also show the same trend, but the pressure difference is smaller since the injection duration is 
only 1 year (Figure A-6, Appendix A). The reservoir pressure changes due to CO2 injection are 
still limited by the fracture pressure in these simulations, and the pressure differences dissipate 
very quickly during the years of postinjection, especially for the cases with short injection 
durations. 
 
 
CONCLUSIONS AND FUTURE WORK 
 
 Based on the simulation results, the storage of CO2 in the study area using the existing two-
well configuration is feasible, depending on the volume of CO2 available from the Boundary 
Dam power plant. The static CO2 capacity for the local- or fine-scale model extent ranges from 
8.4 Mt to 27.1 Mt for the P10 and P90 confidence levels, respectively. With regard to a dynamic 
storage capacity, the maximum simulated injectivity for the current injection well is 0.73 Mt/year 
based on the geologic characterization of the study area. Based on these simulation results, the 
maximum storage potential of the Aquistore site with one injection well is approximately  
34 million tons after 50 years. However, this can be improved based on optimization operations 
such as multiple injectors, formation water extraction, and horizontal injection, which will be 
investigated in the next phase. The larger capacity value obtained through the dynamic modeling 
suggests that the storage coefficient used in the static approach may be too low and that the CO2 
will successfully interact with a larger percentage of the system. 
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 Boundary conditions of the model play a significant role in the estimation of CO2 storage 
capacity. Specifically, with an open system configuration that allows fluid and pressure 
communication up to and beyond the model boundaries, there is the potential for greater storage 
capacity/efficiency. It is currently expected that the system is open; however, further geological 
investigation will be help to properly identify and extend the open system from the small area to 
the extended region.  
 
 Based on the simulated CO2 injection cases, the earliest CO2 breakthrough to the 
observation well may happen in as few as 15 days with a 1-Mt/year injection rate. The 
breakthrough time at the observation well may be extended to 1 month if the injection rate is 
reduced to 0.3 Mt/yr. The simulated overall CO2 breakthrough in the other reservoir zones 
occurred after about 3 months of injection with the low injection rate, and this breakthrough time 
was reduced to about 45 days at the high injection rate. 
 
 The simulated pressure response in all cases indicated that the system was locally pressure-
limited in the open-system cases, as an injection rate of 1 Mt/yr was not achieved in any case. In 
the closed-system cases, pressure was also limited by boundary conditions, which resulted in a 
much lower injection rate. 
 
 Future work will include extending the size of the model to provide better insights with 
respect to a commercial-scale rate of injection over a long period of time. In addition, 
geotechnical, geochemical, and geothermal behaviors will be integrated throughout the entire 
modeling and simulation process to investigate the role of these variables in the overall storage 
estimation. In addition, more core analysis data will be integrated into the modeling and 
simulation to reduce uncertainty, and the actual injection volumes will be modeled once injection 
begins at the site. 
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APPENDIX A 
 

SIMULATION RESULTS OF CO2 MOVEMENT 
AND PRESSURE DIFFERENCE OVER TIME 
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