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EERC DISCLAIMER

LEGAL NOTICE This research report was prepared by the Energy & Environmental
Research Center (EERC), an agency of the University of North Dakota, as an account of work
sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory
(NETL). Because of the research nature of the work performed, neither the EERC nor any of its
employees makes any warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement or recommendation by the
EERC.
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DOE DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or any
agency thereof.

NDIC DISCLAIMER

This report was prepared by the EERC pursuant to an agreement partially funded by the
Industrial Commission of North Dakota, and neither the EERC nor any of its subcontractors nor
the North Dakota Industrial Commission (NDIC) nor any person acting on behalf of either:

(A) Makes any warranty or representation, express or implied, with respect to the
accuracy, completeness, or usefulness of the information contained in this report or
that the use of any information, apparatus, method, or process disclosed in this report
may not infringe privately owned rights; or

(B) Assumes any liabilities with respect to the use of, or for damages resulting from the
use of, any information, apparatus, method, or process disclosed in this report.



Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the North Dakota Industrial Commission. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the North Dakota Industrial
Commission.
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GEOLOGIC MODELING AND SIMULATION REPORT
FOR THE AQUISTORE PROJECT

EXECUTIVE SUMMARY

The Plains CO2 Reduction (PCOR) Partnership, through the Energy & Environmental
Research Center (EERC), has been supporting, and continues to support, the Petroleum
Technology Research Centre (PTRC) Aquistore project. This support has been in the form of
geologic characterization, involvement in the Science and Engineering Research Committee
(SERC), involvement in public outreach, developing geologic models and running predictive
simulations on the expected injection program at the site. The Aquistore project is part of the
world’s first commercial postcombustion carbon capture, utilization, and storage project from a
coal-fired power-generating facility, the SaskPower Boundary Dam, located in Saskatchewan,
Canada, and will be acting as a storage site for a portion of the captured CO, from the Boundary
Dam power plant. The Agquistore site includes one injection well and a 152-meter offset
observation well. Both wells were drilled and completed in the Deadwood and Black Island
Formations. At the time of this report, injection at the Aquistore site is anticipated to begin in late
2014.

To better understand the storage implications of injecting carbon dioxide (COy) at the
Aquistore site, the EERC has constructed Pio, Pso, and Pgo geologic model realizations and run
three new predictive simulation scenarios on each realization. These models and simulations were
constructed to better understand both operational and geologic uncertainties that may exist at the
Aquistore site. The geologic model realizations and simulations are an update to those completed
in the original report entitled “Geologic Modeling and Simulation Report for the Aquistore
Project,” Deliverable D93, approved in March 2014.

In this update, the same fine-scale model extent of the 34-square-kilometer PTRC 3-D
seismic survey area, with higher structural resolution, was continually used for the uncertainty
analysis. A low (P10), mid (Pso), and high volumetric (P9o) case for the amount of pore volume
accessible to store the potential injected CO2 was ranked based on certain deviation variations of
model-building parameters, including effective porosity and net-to-gross reservoir, in six sand
units of the study area. Three cases with various injection rate and period schemes were simulated
based on uncertainty models P10, Pso, and Pago.



The first CO> breakthrough time, pressure change, CO2 plume extent, and CO2 movement
probability distribution for three cases over all uncertainty realizations were monitored and
calculated. The first CO. breakthrough for the high injection rate cases (Cases 1 and 3,
1000-tonne/day injection rate) most likely happened within the first injection month. With the
various heterogeneities of the realizations, the breakthrough time may be earlier, between
14 to 19 days (Table ES-1). For the low injection rate Case 2 (1000-tonne/day injection rate), the
first CO> breakthrough may be postponed to the end of the second month (~ 59 days) of when the
injection started. This time was even extended to the middle of the third month, which is about 73
days for the first breakthrough (Table ES-1).

The pressure monitoring on the observation well was always lower than 37,250 kPa based
on the injection bottomhole pressure constraint, 42,750 kPa, imposed on the injection well. The
maximum reservoir pressure increasing due to CO- injection is around 4800 kPa within the first
breakthrough time, as compared to the initial pressure of the reservoir.

The times of CO; breakthrough, pressure change, CO, movement, plume extent, and
probability distribution were changed in Cases 2 and 3 because of the different injection rates and
periods, especially in the individual time intervals. The differences may decrease after the same
total amount of CO is injected in Cases 2 and 3.

Uncertainty over geologic realizations is significant to influence CO> injection behavior and
CO2 movement underground. The first breakthrough time, pressure front, reservoir pressure
buildup, CO2 plume, and CO- probability distribution were significantly varied over such geologic
realizations. Uncertainty analysis on the results by calculating the probability distribution could
provide insights of CO, movement that ultimately helps on the decision of leakage monitoring,
risk assessment, and the monitoring, verification, and accounting plan.

Table ES-1. Simulation Results Summary for All Cases
Injection  Injection

Rate, Period, First Breakthrough Time, days

tonnes/day days Injection Pattern P10 Pso Pgo

Case 1l 1000 30 Continuous ~19 ~19 ~30
Case 2 301 1095 Continuous ~59 ~59 ~73
Case 3 1000 933 Start—stop—start ~19 ~19 ~30
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GEOLOGIC MODELING AND SIMULATION REPORT
FOR THE AQUISTORE PROJECT

INTRODUCTION

The Plains CO2 Reduction (PCOR) Partnership, through the Energy & Environmental
Research Center (EERC), is collaborating with the Petroleum Technology Research Centre
(PTRC) on site characterization; modeling and simulation; risk assessment; public outreach; and
monitoring, verification, and accounting (MVA) activities for the Aquistore project. The Aquistore
project is a carbon capture, utilization, and storage (CCUS) project situated near the town of
Estevan, Saskatchewan, Canada, and the U.S.—Canada border. This project is managed by PTRC
and will serve as buffer storage of carbon dioxide (CO2) from the SaskPower Boundary Dam
CCUS project, the world’s first commercial-scale postcombustion CCUS project from a coal-fired
electric generating facility. To date, an injection well and an observation research well (~152
meters apart) have been drilled and completed at the Aquistore site, with injection anticipated to
begin in 2014. Using a combination of site characterization data provided by PTRC and
independently acquired information, the PCOR Partnership has constructed a static geologic model
to assess the potential storage capacity of the Aquistore site and provide the foundation for
dynamic simulation. The geologic model and the results of the predictive simulations will be used
in the risk assessment process to help define an overall monitoring plan for the project and to
ensure stakeholders that the injected CO> will remain safely stored.

The deep saline system targeted for storage comprises the Deadwood and Black Island
Formations, the deepest sedimentary units in the Williston Basin. At nearly 3500 meters below the
surface, this saline system is situated below the oil production and potash-bearing formations in
the region and provides a secure location for the storage of CO>. Characterization data acquired
from the Aquistore site for these formations include a 3-D seismic survey, petrophysical core data,
and a comprehensive logging suite. All such available data were incorporated into model
development and dynamic simulations that were reported in the previous deliverable D93 (Peck
and others, 2014). This report updates the studies included in the previous deliverable D93 that
focused on fine-tuning the first CO2 breakthrough timing and pressure changes observed at the
monitoring well with the various injection rates and injection periods. The model area is the same
as the previous version’s fine-scale 34-square-kilometer PTRC 3-D seismic survey area (Figures
1-3). The results from this study will be used in the risk assessment process for CO2 monitoring
and, ultimately, an MVA plan.
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Figure 2. Simulation model with local grid refinement created to keep the grid resolution around
the observation and injection wells (will be magnified in Figure 3).
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Figure 3. Magnification of the local grid refinement around the observation and injection wells in
Figure 2. Large cells are 76 x 76, meters and small cells are 7.6 x 7.6 meters (Peck and others,
2014).

BACKGROUND

This project updated the modeling and simulation results of the first CO. breakthrough time,
pressure change, and CO, plume extent for three different geologic realizations and three different
operating scenarios. These simulation results can be used to assist in the risk assessment process
and MVA planning for the Aquistore project. The geologic model used in this report was based on
the work detailed in the original report entitled “Geologic Modeling and Simulation Report for the
Aquistore Project” (Peck and others, 2014). The main content of the original report included the
following:

e A regional-scale model was first constructed to determine the regional stratigraphic
reservoir and nonreservoir zones. From this regional model, a fine-scale model was
constructed with an extent of the 34-square-kilometer PTRC 3-D seismic survey area and
incorporated higher structural resolution. Integration of the data derived from the regional
model and the data from the 3-D seismic survey resulted in a robust and heterogeneous
model around the Aquistore injection well and the observation well.



e The volumetric CO- storage capacities with P10, Pso, and Pgo cases of the fine-scale model
were assessed based on the approach described in the U.S. Department of Energy (DOE)
Atlas 111 (U.S. Department of Energy Office of Fossil Energy, 2010) which builds on the
IEAGHG work of Gorecki and others (2009).

e Nine simulation cases were designed to verify the volumetric CO, storage capacities by
considering pressure changes and other operational factors such as boundary conditions,
injection rates, relative permeabilities, and time lengths.

e CO2 plume extent and pressure responses during injection and postinjection periods were
also assessed.

APPROACH

The approach used in this update is to assess the effect that geologic uncertainty and different
operational parameters play in the breakthrough time at the monitoring well, pressure perturbation
and dissipation, and CO plume evolution. This approach first started with the construction of
multiple geologic realizations of the fine-scale area. Modeling building parameters varied in these
models include shale volume, porosity, variogram range, structural interpretation, and net-to-gross
reservoir in all 12 traceable zones, including six sand units and six shale units throughout the
regional study area. The results of the uncertainty analysis were then ranked accordingly by
calculated pore volume, resulting in a low (P10), mid (Pso), and high volumetric (P9o) case for the
amount of pore volume accessible to store the potential injected COo.

Three operational cases were selected to cover a range of possible injection scenarios that
may be experienced at the Aquistore site. Case 1 was set up to run for 30 days of injection (and 35
months of postinjection) at an injection rate of 1000 metric tons of CO/day for a total of
30,000 metric tons of CO> injected. Case 2 was designed to inject 301 metric tons of CO/day for
3 years or a total of 300,000 metric tons of CO». Case 3 was designed to inject 1000 metric tons
of CO/day for 30 days, shut in for 2 months, return to injection at the original rate of
1000 metric tons of CO>/day for a month, then repeat the cycle of injection and shut in until
300,000 metric tons of CO2 had been injected (about 3 years). Case 1 was designed to evaluate
first CO2 breakthrough times, the accompanying pressures at the observation well, and the CO-
plume extents. Cases 2 and 3 were designed to evaluate the effects of operational considerations
(rate and timing of injection) on pressure evolution, CO2 plume extent, and to evaluate for any
other resultant differences. The simulation results of each injection scenario were incorporated
back to the uncertainty-based geologic models to calculate the probability distributions of each
monitored parameter and are reported in this update.

GEOLOGIC UNCERTAINTY ANALYSIS
Schlumberger’s Uncertainty and Optimization process within its Petrel software was used to

create P1o, Pso, and Pgo volumetric cases based on the same fine-scale model extent of the
34-square-kilometer PTRC 3-D seismic survey area, with higher structural resolution as reported



by Peck and others (2014). These cases were created from the base case simulation model by
model-building parameters, including shale volume, porosity, variogram range, structural
interpretation, and reservoir net-to-gross cutoff criteria in all 12 traceable zones, including six sand
units and six shale units throughout the regional study area. However, since the earlier study
showed that the most significant parameters were effective porosity (PHIE) and reservoir net-to-
gross (NTG) cutoff criteria, the uncertainty variation in this report only focused on these two key
parameters (Peck and others, 2014).

To develop low (P10), mid (Pso), and high (Pgo) volumetric cases, 250 realizations were run
in which two reservoir properties, PHIE and NTG, were varied. The base case PHIE from the
Aquistore geologic model documented in the previous study was varied by three standard
deviations. The resulting PHIE was then used in determining NTG with the PHIE cutoff ranging
from 3% to 5%. NTG was set equal to 1 if PHIE equaled or exceeded the cutoff and O if the cutoff
criterion were not met. Normal distributions of both PHIE and NTG were assumed, and a Monte
Carlo sampling method was used. The 250 resulting cases were ranked by pore volume from lowest
to highest, and P10, Pso, and Pgo volume cases were selected for simulation that were not only close
to their volume percentile rankings but also near their respective rankings in effective porosity and
NTG cutoff criterion. This was done to avoid a volumes case having extremely pessimistic
criterion for one of the variables and an extremely optimistic criterion for the second variable. The
base case model’s volume, effective porosity, and NTG discussed in the previous report were also
validated by comparison with the Pso case from the uncertainty analysis. For simulation of the
uncertainty volumetric cases, Pio, Pso, and Pgo permeability cases were then created from the
porosity property found in the P1o, Pso, and Pgo volumetric cases using the same methodology as
used in populating the base case model with permeability (bivariate relationship determined from
the porosity and permeability analysis from the core data). The details of uncertainty results are
listed in Tables 1 and 2.

The closeness in the ranges and mean values of effective porosity in the various volume
cases makes it difficult to distinguish variances in this property visually. The distribution of the
NTG property in the P1o and Pgo volume cases at the location of the injector well are shown in
Figures 4 and 5, respectively, while horizontal permeability is displayed in Figures 6 and 7.
Table 2 reveals that in the Black Island and Deadwood sands, the permeability value of the base
case is closer to the P1o than to the Pso case. The table also shows that the Pgo permeability is lower
than the Pso permeability in the Upper Black Island and Deadwood C sands. These results are a
result of populating the models with permeability using a bivariate distribution method (derived
from core permeability and porosity data) which has a large range in permeability over a small
range of porosity.

Although subtle, the differences can be seen between the permeability in the P1o case (Figure
6) and in the Pgoo permeability case (Figure 7). For example, east of the injector well in the
Deadwood D sand zone (above 2682 feet subsea depth), a greater number of cells have
permeability above 100 millidarcies (orange color) in the Pgo case than in the P1o case.

Table 1. Pore Volume for the Black Island and Deadwood Sands in the Fine-Scale Model Area



Pore VVolume, 108 cubic meters

Case UBISand L BISand Deadwood D Deadwood C Deadwood B  Deadwood A  Total
P10 6.4 36.7 19.9 8.6 3.3 62.5 137.4
Base 7.2 40.1 20.8 9.7 4.0 68.2 149.9
Pso 7.2 40.1 20.8 9.7 4.0 68.0 149.8
Pao 8.1 43.2 21.6 10.8 4.6 73.8 162.2




Table 2. PHIE, NTG, and Permeability of P10, Base Case, Pso, and Pgo for the Black Island and Deadwood Sands in the Model

Zone Property Case
P1o Base Case Pso Case Pao
Range Range Range Range
Min. Max. Mean Min. Max. | Mean Min. Max. Mean Min. Max. Mean
U BIk Island Sand 0 0.126 0.039 0 0.131 | 0.040 0 0.131 | 0.040 0 0.135 | 0.041
L Blk Island Sand 0 0.145 0.047 0 0.151 | 0.049 0 0.151 | 0.049 0 0.155 | 0.050
Deadwood D Sd. PHIE 0 0.142 0.070 0 0.147 | 0.073 0 0.147 | 0.073 0 0.151 | 0.075
Deadwood C Sd. 0 0.120 0.045 0 0.125 | 0.047 0 0.125 | 0.047 0 0.128 | 0.048
Deadwood B Sd. 0 0.113 0.032 0 0.117 | 0.033 0 0.117 | 0.034 0 0.120 | 0.034
Deadwood A Sd. 0 0.160 0.049 0 0.166 | 0.050 0 0.166 | 0.051 0 0.171 | 0.052
All Sands 0 0.160 0.048 0 0.166 | 0.050 0 0.166 | 0.050 0 0.171 | 0.051
P1o Base Case Pso Case Poo
Range Range Range Range
Min. Max. Mean Min. Max. Mean Min. Max. Mean Min. Max. Mean
U BIk Island Sand 0 1.000 | 0.395 0 1.000 | 0.451 0 1.000 | 0.446 0 1.000 | 0.521
L Blk Island Sand 0 1.000 | 0.552 0 1.000 | 0.599 0 1.000 | 0.596 0 1.000 | 0.654
Deadwood D Sd. NTG 0 1.000 | 0.902 0 1.000 | 0.925 0 1.000 | 0.923 0 1.000 | 0.944
Deadwood C Sd. 0 1.000 | 0.570 0 1.000 | 0.649 0 1.000 | 0.641 0 1.000 | 0.723
Deadwood B Sd. 0 1.000 | 0.300 0 1.000 | 0.353 0 1.000 | 0.349 0 1.000 | 0.420
Deadwood A Sd. 0 1.000 | 0.562 0 1.000 | 0.612 0 1.000 | 0.608 0 1.000 | 0.668
All Sands 0 1.000 | 0.562 0 1.000 | 0.612 0 1.000 | 0.608 0 1.000 | 0.667
P1o Base Case Pso Case Poo
Range Range Range Range
Min. Max. Mean Min. Max. Mean Min. Max. Mean Min. Max. Mean
U BIk Island Sand 0.026 97.0 1.8 0.040 97.0 1.7 0.040 | 97.0 3.6 0.040 | 97.0 3.4
L Blk Island Sand 0.028 97.0 3.3 0.040 97.0 2.5 0.040 | 97.0 4.0 0.040 | 97.0 4.4
Deadwood D Sd. K 0.004 | 3123 | 255 0.005 | 312.3 23.8 0.005 | 312.3 30.9 0.005 | 312.3 34.1
Deadwood C Sd. " 0.004 | 3123 | 11.7 0.005 | 312.3 10.2 0.005 | 312.3 18.4 0.005 | 312.3 17.6
Deadwood B Sd. 0.002 | 312.3 9.1 0.005 | 312.3 6.0 0.005 | 312.3 12.3 0.005 | 312.3 13.4
Deadwood A Sd. 0.040 | 312.3 | 12.8 0.005 | 312.3 10.6 0.005 | 312.3 15.8 0.005 | 312.3 18.7
All Sands 0.005 | 312.3 | 10.2 0.005 | 312.3 8.5 0.005 | 312.3 12.9 0.005 | 312.3 14.6
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Figure 4. Distributed NTG in the P1o volume case near the Aquistore injection well. A zonation
log is displayed along the wellbore to show the reservoir (yellow) and nonreservoir zones (gray).
Z axis is in subsea depth (meters).
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Figure 5. Distributed NTG in the Pgo volume case near the Aquistore injection well. A zonation
log is displayed along the wellbore to show the reservoir (yellow) and nonreservoir zones (gray).
Z axis is in subsea depth (meters). Note the greater number of cells meeting the NTG cutoff
criteria (yellow color) in the Pgo volume case (this figure) when compared to the P1o volume case
(Figure 4).
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Figure 6. Distributed horizontal permeability in the P1o volume case near the Aquistore injection
well. A zonation log is displayed along the wellbore to show the reservoir (yellow) and
nonreservoir zones (gray). Z axis is in subsea depth (meters).
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Figure 7. Distributed horizontal permeability in the Poo volume case near the Aquistore injection
well. A zonation log is displayed along the wellbore to show the reservoir (yellow) and
nonreservoir zones (gray). Z axis is in subsea depth (meters).
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DYNAMIC SIMULATION AND MODEL SETTINGS

To further tune the CO, movement and pressure change over the injection and postinjection
period of the previous work (Peck and others, 2014), three cases with various injection rates and
periods were simulated. Moreover, based on the uncertainty of the geology, three more realizations
along with the base case (Peck and others, 2014) were simulated to assess the uncertainty effects
on CO: breakthrough time, pressure propagation, and CO, movement underground. Three
simulation cases were run on each of the three geologic realizations for a total of nine simulation
runs.

The dynamic simulation workflow reported in the previous report was repeated in this effort.
The fluid system, CO> dissolution option, and aqueous density and viscosity correlations over the
varying pressure and temperature kept the same settings. The relative permeabilities (Figure 8) for
the rock—fluid system were the second set of curves referenced from Bachu and Adams (2003) and
Bachu and others (2011). All of the dynamic simulations were performed using Computer
Modelling Group Ltd.’s (CMG’s) general equation-of-state modeling (GEM) software package
(www.cmgl.ca/) on a 184-core, high-performance parallel computing cluster.

11
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Figure 8. Relative permeability curves used for the simulation (Bachu and Adams, 2003; Bachu
and others, 2011).

DYNAMIC SIMULATION RESULTS AND DISCUSSION

Nine cases were designed to address CO- breakthrough, CO2> movement, pressure change,
and CO. probability distributions over the various injection rates, periods, and geologic
realizations. Case 1 is based on an injection rate of 1000 tonnes/day for only 30 days (a total of
30,000 tonnes of CO) followed by a 2-year postinjection observation. Case 2 focused on a
cumulative 330,000 tonnes of CO: injected in 3 years. The injection rate for this case was
approximately 301 tonnes/day. Case 3 also kept the same cumulative 330,000 tonnes of CO;
injection, but with an injection rate of 1000 tonnes/day for 30 days, followed by 60 days of
noninjection, then another 1000 tonnes/day for 30 days. This start-—stop-start pattern was
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repeated until 330,000 tonnes was injected (933 days or about 3 years). The perforation of the
injection well was updated in the model by referencing PTRC data (Figure 9). All three cases were
analyzed based on the three uncertainty realizations P10, Pso, and Pgo. Because of the small amount
of expected CO: injection compared to the total potential storage capacity of the study area (1.5
Mt, Peck and others, 2014), all expected CO> could be injected, as shown in Figures 10 and 11.
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and 2 meters in the Deadwood C shale (Layer 41) were also
perforated.

Deadwood C Sand
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Note: A few feet of overlying Deadwood D shale (Layer 41) were
also perforated.

Deadwood A Sand

Layers 63—102
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Note: Perforations extend about 15 meters below model base (into
Precambrian).

Figure 9. Perforations along the injection well.
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Times of the first CO2 breakthrough on the observation well were monitored by measuring
the CO; saturation during the injection period for all cases. The cross-sectional images of the CO-
saturation included in the report were cut along the plane of the injection well and the observation
well from top to bottom of the study area. Details of the CO2> movement for each zone were
demonstrated in each of the monitoring time periods. CO saturations along the observation well
from top to bottom were measured to detect CO movement over time
(Figure 9). Such plots provided a profile of the CO2 breakthrough from individual zones and
indicated how much the CO; saturation would be at the specific time frame. The first CO-
breakthroughs for all cases are summarized in Table 3. Based on the properties of geologic
realizations, the first breakthrough of P10 happened in the base reservoir zone (Deadwood A Sand
Unit), while Pso was in the Deadwood C Sand Unit, and Pgo was in the Deadwood D Sand Unit.
These trends were also true for all cases regardless of the injection scheme. Detailed results will
be demonstrated by case in the next sections.

The pressure change resulting from the injection of CO2 was also tracked by plotting the
comparisons of the time periods for cases and realizations along the observation well from top to
bottom (Figure 9). Such plots provide some idea of the reservoir’s response due to CO> injection
for risk assessment and monitoring even before actual CO. breakthrough happens at the
observation well. Overall, pressure monitoring on the observation well showed that the pressure
changes for all cases were lower than 37,250 kPa which is notably lower than the 42,750 kPa
bottomhole pressure (BHP) constraint placed on the injection well. The maximum reservoir
pressure increase because of CO> injection was lower than 4800 kPa within the first breakthrough
time, compared to the initial pressure (Cases 1 and 3). The main reason is the designed injection
rate for the three cases is lower than the possible maximum potential based on the available
injectivity (0.7 Mt/yr, Peck and others (2014)).

The plan views of the CO. plume extent over time were created to provide insight into CO>
movement in the study area. Variation in heterogeneitity across the various geologic realizations
resulted in differences in CO, plume extents and shapes. To comprehensively understand the
uncertainty of the simulation results, the probability distributions for each of the cases were
calculated based on the realizations. These distributions indicted some high, mid, and low
estimations of the CO> extents over the injection and postinjection periods. All results will be
discussed by case in the following.

Table 3. Simulation Results Summary for All Cases

Injection Rate, Injection Period, First Breakthrough Time, days
tonnes/day days Injection Pattern P10 Pso Pgo

Case 1 1000 30 Continuous ~19 ~19 ~30
Case 2 301 1095 Continuous ~59 ~59 ~73
Case 3 1000 933 Start—stop-start ~19 ~19 ~30
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Casel

The cumulative CO- injection in this case is 30,000 tonnes at a rate of 1000 tonnes/day for
30 days (Figures A-1 and A-2). During the injection period, the first CO, breakthrough was
monitored for three geologic realizations by cross-section imaging and observation well plotting
(Figures A-3to A-5). Overall, the CO> movement in realization P10 and Pso was faster than the one
in Pgo. This is the reason why the time of the first breakthrough for Pio and Pso is earlier
(19 days) than Pgo’s (30 days). Pressure change plotting along the observation well, CO2 plume
extent, and CO2 movement probabilities over geologic uncertainties were also monitored over a 2-
year postinjection period (Figures A-6 to A-10).

Case 2

The cumulative CO> injection for this case is 330,000 tonnes at a rate of 301 tonnes/day for
3 years (1095 days, Figures A-11 and A-12). During the injection period, the first CO-
breakthrough was monitored for three geologic realizations by cross-section imaging and
observation well plotting (Figures A-13 to A-15). Overall, the time of the first breakthrough for
both P1o and Pso was about 59 days, while the Poo was around 90 days. Pressure change plotting
along the observation well, CO2 plume extent, and CO, movement probabilities over geologic
uncertainties were also monitored over the injection period (Figures A-16 to A-20).

Case 3

The cumulative COz injection in this case is 330,000 tonnes at a rate of 1000 tonnes/day for
30 days, followed by 60 days of noninjection, then another 1000 tonnes/day for 30 days. This start—
stop—start pattern was repeated until 330,000 tonnes was injected (Figures A-21 and A-22). The
injection process lasted about 933 days for a total of 330,000 tonnes of injected CO>. During the
injection period, the first CO2 breakthrough was monitored for three geologic realizations by cross-
section imaging and observation well plotting (Figures A-23 to A-25). Overall, the time of the first
breakthrough was exactly the same as the results in Case 1 because the first breakthrough for the
three realizations happened before injection was stopped for the next injection cycle. Pressure
change plotting along the observation well, CO2 plume extent, and CO2 movement probabilities
over geologic uncertainties were also monitored over the injection period (Figures A-26 to A-30).

Comparisons Between Cases 2 and 3

Both Cases 2 and 3 injected a total of 330,000 tonnes of CO- but at different injection rates
and schemes. Case 2 is 301 tonnes/day for 3 years, and Case 3 is 1000 tonnes/day following a
start—stop-—start pattern: 30 days of injection, then stopping 60 days, then another 30 days of
injection. This start-stop-start pattern was repeated until 330,000 tonnes was injected. This
process took 933 days for the total amount of expected CO: injection. Because of the different
injection rates and schemes, the breakthrough time, pressure change, CO2 movement, plume
extent, and probability distribution varied greatly. Because of the lower injection rate, the first
breakthrough time of Case 2, 2 months or longer (about 59 to 73 days), is longer than Case 3’s,
within the first month (about 19 days to 30 days) (Figures A-31 and A-32). Correspondingly, the
reservoir pressure buildup in Case 2 is much lower (about 2,750 kPa) than the one in Case 3 (Figure
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A-33). Regarding CO, movement and plume extent, Case 3 with the higher injection rate was
slightly larger than Case 2’s right after the same amount of CO; injection (Figure A-34). This trend
was also true for the comparisons of CO2 movement probabilities in Cases 2 and 3 (Figure A-35).

CONCLUSIONS AND FUTURE WORK

Based on the simulation results, all expected amounts of CO2 could be injected over all
designed cases and geologic realizations. It means that there are no injectivity concerns for these
scenarios with varied injection rates, periods, and schemes. The main reason is that the expected
injection rate is only 50% of the maximum rate (0.73 Mt/yr, Peck and others, 2014).

The first breakthrough for Cases 1 and 3, with a COz injection rate of 1000 tonnes/day, most
likely happened around 19 days after injection started for realizations P1o and Pso. However, this
time may be extended 30 days in realization Pgo because of different geologic properties. Overall,
the first breakthrough time in Case 1 was within the first month. Regarding Case 2, at a 301-
tonne/day injection rate, the first breakthrough time happened at the end of the second month
(about 59 days) after injection started. This time also may be extended to the third month (about
73 days) in realization Pgo.

The pressure monitoring on the observation well is always lower than 37,250 kPa based on
the injection BHP constraint of 42,750 kPa imposed on the injection well. The maximum reservoir
pressure increase due to COz injection is around 4800 kPa above the original reservoir pressure of
approximately 36 MPa. The main reason for the small increase in reservoir pressure is that the
target injection rate in these cases was less than half of the maximum injection rate as estimated
from the previous investigations (Peck and others, 2014).

Regarding comparisons between Cases 2 and 3, the time of CO; breakthrough, pressure
change, CO2 movement, plume extent, and probability distribution were different because of the
varied injection rates and periods, especially in the individual time intervals. The differences
decrease after the same total amount of CO: is injected. When the resultant final CO, plumes in
Cases 2 and 3 are compared, the results are nearly identical, with only a slightly larger plume
extent in the simulations on Case 3.

Uncertainty over geologic realizations is certain to influence CO: injection behavior and CO-
movement underground. The first breakthrough time, pressure front, reservoir pressure buildup,
CO2 plume, and CO2 probability distribution were significantly varied over such geologic
realizations. The results of uncertainty analysis in calculating the probability distribution could
provide insight into CO. movement that ultimately helps with decisions involving leakage
monitoring, risk assessment, and the MVA plan.

The studies covered in this report are limited to 3 years of simulation results. A longer period
of investigation may be necessary to help with any long-term risk assessment and MVA plan.
Moreover, the other phenomenon such as geomechanical behavior, relative permeability
hysteresis, and rock compressibility variations over the study area may have an effect on the first
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breakthrough time and overall CO> movement. These uncertainties will be addressed in the next
phase of the work.
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Figure A-1. Cumulative CO> injection histories for Case 1 over three realizations.
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Figure A-3 (continued). Cross-section view of CO; saturation over time, starting from the injection beginning (continued).
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Figure A-3 (continued). Cross-section view of CO; saturation over time, starting from the injection beginning (continued).
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Figure A-3 (continued). Cross-section view of CO> saturation over time, starting from the injection beginning.
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Figure A-6. Pressure plots along the observation well from top to bottom over time, starting from the injection beginning (continued).
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Figure A-6 (continued). Pressure plots along the observation well from top to bottom over time, starting from the injection beginning.
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Figure A-7. CO; saturation plots along the observation well from top to bottom over time based on three geologic realizations.
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Figure A-8 (continued). CO2 plume maps over time, starting from the injection beginning (continued).
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Figure A-8 (continued). CO2 plume maps over time, starting from the injection beginning.
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Figure A-10. Probability distributions of CO2 movement over time (continued).
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Figure A-10 (continued). Probability distributions of CO, movement over time (continued).
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Figure A-10 (continued). Probability distributions of CO, movement over time.
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Case 2 CO2 Breakthrough Monitoring

Figure A-13. Cross-section view of CO» saturation over time, starting from the injection beginning.
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Figure A-13 (continued). Cross-section view of CO» saturation over time, starting from the injection beginning (continued).
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Figure A-13 (continued). Cross-section view of CO» saturation over time, starting from the injection beginning.
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Figure A-14. CO; saturation plots along the observation well from top to bottom over time, starting from the injection beginning
(continued).
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Figure A-15. CO; saturation plots along the observation well from top to bottom over time based on three geologic realizations.
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Figure A-16. Pressure plots along the observation well from top to bottom over time, starting from the injection beginning.
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Figure A-17. CO> saturation plots along the observation well from top to bottom over time based on three geologic realizations.
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Case 2 CO2 Plume Movements
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Figure A-18. CO2 plume maps over time, starting from the injection beginning (continued).
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Figure A-18 (continued). CO2 plume maps over time, starting from the injection beginning.



1€V

Lagend

0 Srwverwn v

 Ctmerad e N

© Aymdee A e
— S o dap

— 3 g e breat g

e

—Ada g beaar oughy
W
1 row Ty
[ Aamy )= T — 2y
R — RS

Figure A-19. CO- plume maps over three geologic realizations.
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Case 2 Probability Distributions of CO2 Movement
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Figure A-20. Probability distributions of CO2 movement over time (continued).
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Figure A-20 (continued). Probability distributions of CO> movement over time (continued).
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Figure A-20 (continued). Probability distributions of CO> movement over time.
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Figure A-21. Cumulative COz injection histories for Case 3 over three realizations.
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Case 3 CO2 Breakthrough Monitoring
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Figure A-23. Cross-section view of CO> saturation over time, starting from the injection beginning (continued).
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Figure A-23 (continued). Cross-section view of CO- saturation over time, starting from the injection beginning (continued).
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Figure A-23 (continued). Cross-section view of CO» saturation over time, starting from the injection beginning.
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Figure A-24. CO> saturation plots along the observation well from top to bottom over time, starting from the injection beginning.
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Figure A-25. CO; saturation plots along the observation well from top to bottom over time based on three geologic realizations.
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Figure A-26. Pressure plots along the observation well from top to bottom over time, starting from the injection beginning.
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Figure A-27. CO> saturation plots along the observation well from top to bottom over time based on three geologic realizations.
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Case 3 CO2 Plume Movements
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Figure A-28. CO2 plume maps over time, starting from the injection beginning (continued).
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Figure A-28 (continued). CO. plume maps over time, starting from the injection beginning.
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Case 3 Probability Distributions of CO2 Movement
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Figure A-30. Probability distributions of CO2 movement over time (continued).
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Figure A-30 (continued). Probability distributions of CO> movement over time (continued).
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COMPARISONS OF CO2 BREAKTHROUGH MONITORING
Case 2 (30 days)

Figure A-31. Cross-section view of CO» saturation comparisons over time and realizations (continued).
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Figure A-31 (continued). Cross-section view of CO> saturation comparisons over time and realizations (continued).
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Case 2 (90 days)
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Figure A-31 (continued). Cross-section view of CO> saturation comparisons over time and realizations (continued).



€qv

Case 2 (120 days)

EERC GLSG206.COR

Figure A-31 (continued). Cross-section view of CO> saturation comparisons over time and realizations.




vS-v

2480 2480 - EERC GLSG280.COR
— P10: Gas Saluration 2014-01-31 (30.00 day) P10 GGas Savratco 2074-03.01 (88 00 cay) (Frst are:m;o;gh)
---eee-- P50; Ga% Seluralion 2014-01-31(3000¢8ys - | mmmee—e—ee P50’ Gas Sauraton 7014-03-01 {55 00 cay) (FIst Sraakhrough)
e~ PO, Gars Sslurulion 2014-01-31 (30,00 day) P20 Gas Sanuration 2014-03-01 {58 00 eay)
e sr.g |} OREHETRE [ORRRal, SH SRR gL o 2621 - i
- 30 days 59 days
E : ? £
= =
T 2682 | B 2BOS e e e
[ %)
o (&
2743
2&-’! T | | 1 T T x 2804 t T T T l T
0.00 0.10 020 0.30 0.40 0.50 050 070 oo 010 220 030 040 as0 aga 070
Gas Saturation Gas Saturation
2460 2450
—————P10. Ges Salualion 2014-01-31 (30.00 day) -E10. Gos Sanraton 20140301 (69 00 axy)
---------- P50; Gas Saturation 2014.01.31 (30,00 day) == - mememe = B0 Gas Sauraton 2014-03-01 (20 00 dy)
T —— P30 G-s Saturabon 2?1L01-31 (33.0? day) {Flr_sl EWJ =90 Gas Sanration 2014-03-01 (59 00 day)
3 ] A S e AR S SRR A 2621
30 days 59 days
[ e iy E S e P R R ST e
> =
%_ 2682 - B 2682+ ST e
2 3
(&)
2743 === T C e L T LT o i i s mmoce 2743.....-. =
2804 T T T T T T 2804 1 T T 1] 1 1
000 0.10 0.20 0.30 0.40 0.50 0.60 0.70 000 010 0.20 030 0.40 050 060 070
Gas Saturation Gas Saturation

Figure A-32. Comparisons of CO> saturation plots along the observation well from top to bottom over time (continued).
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Figure A-32 (continued). Comparisons of CO> saturation plots along the observation well from top to bottom over time.
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Figure A-33. Comparisons of pressure plots along the observation well from top to bottom over time, starting from the injection

beginning (continued).
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Figure A-33 (continued). Comparisons of pressure plots along the observation well from top to bottom over time, starting from the

injection beginning.
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Figure A-34. Comparisons of CO, plume maps over three geologic realizations (continued).
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Figure A-34 (continued). Comparisons of CO2 plume maps over three geologic realizations (continued).
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Figure A-34 (continued). Comparisons of CO2 plume maps over three geologic realizations.
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Figure A-35. Comparisons of probability distributions of CO, movement over time (continued).
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Figure A-35 (continued). Comparisons of probability distributions of CO, movement over time (continued).
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Figure A-35 (continued). Comparisons of probability distributions of CO, movement over time (continued).



¥9-v

Case 3
Plume Probability

Case 2
Plume Probability

T Cosavasn wed
v ingecia Vel
T yenrs

T Cwsyvan wed
L e el
2 yoars

Bl 25
N o cen
- e

N . A

2 years

Figure A-35 (continued). Comparisons of probability distributions of CO2 movement over time.



