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EERC DISCLAIMER 
 

LEGAL NOTICE This research report was prepared by the Energy & Environmental 
Research Center (EERC), an agency of the University of North Dakota, as an account of work 
sponsored by the U.S. Department of Energy (DOE). Because of the research nature of the work 
performed, neither the EERC nor any of its employees makes any warranty, express or implied, 
or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of 
any information, apparatus, product, or process disclosed or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, process, or 
service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or 
imply its endorsement or recommendation by the EERC. 
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DISCLAIMER 
 

This report was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government, nor any agency thereof, nor any of 
their employees, makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the United 
States Government or any agency thereof. 
 
 
NDIC DISCLAIMER 
 
 This report was prepared by the EERC pursuant to an agreement partially funded by the 
Industrial Commission of North Dakota, and neither the EERC nor any of its subcontractors nor 
the North Dakota Industrial Commission nor any person acting on behalf of either: 
 

(A) Makes any warranty or representation, express or implied, with respect to the 
accuracy, completeness, or usefulness of the information contained in this report or 
that the use of any information, apparatus, method, or process disclosed in this report 
may not infringe privately owned rights; or 



 

(B) Assumes any liabilities with respect to the use of, or for damages resulting from the 
use of, any information, apparatus, method, or process disclosed in this report. 

 
 Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the North Dakota Industrial Commission. The views and 
opinions of authors expressed herein do not necessarily state or reflect those of the North Dakota 
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 The basal Cambrian system is a deep saline reservoir that has been identified by DOE as a 
potential CO2 storage site. The basal Cambrian system spans a region that includes parts of both 
the United States and Canada. On the U.S. side of the border, the basal Cambrian system covers 
an area of approximately 507,155 square kilometers (195,814 square miles) and occurs in the 
states of Montana, North Dakota, and South Dakota (Figure 1); on the Canadian side of the 
border, it encompasses nearly 811,345 square kilometers (313,285 square miles) in the provinces 
of Alberta, Saskatchewan, and Manitoba. This work evaluates one component of CO2 storage in 
the basal Cambrian system – the integrity of wellbores that penetrate the system.  
 
 
WELLBORE INTEGRITY BACKGROUND 
 

For CCS to be successful, a CO2 storage formation needs to meet three fundamental 
conditions: 1) capacity, 2) injectivity, and 3) confinement (Zhang and Bachu, 2011; Bachu, 2003, 
2010; Intergovernmental Panel on Climate Change, 2005). The targeted CO2 storage formations 
in the basal Cambrian system have demonstrated the capacity and ability to hold materials such 
as oil, natural gas, or saline water. Wellbore integrity is the ability of a well to maintain isolation 
of geologic formations and prevent the vertical migration of fluids (Zhang and Bachu, 2011; 
Crow and others, 2010). Wellbore integrity is crucial because any leakage of CO2 poses a 
potential risk to surrounding groundwater, vegetation, and wildlife. In addition, it diminishes the 
quantity of CO2 for which storage credits can be claimed as part of either monetary agreements 
or regulatory compliance. For the purposes of this study, leakage will be defined as a loss of CO2 
or other fluid from its intended storage formation and not necessarily losses to the atmosphere.  
 

For a CO2 leak to occur, there are three elements that must exist: 1) a leak source, 2) a 
driving force such as buoyancy or head differential, and 3) a leakage pathway (Watson and 
Bachu, 2007). When evaluating the potential of CO2 leakage at a carbon storage site, the first 
two elements are presumed to already exist. The injected CO2 is the leak source, and the driving 
force is CO2 buoyancy and, potentially, the increased subsurface pressure caused by the CO2 
injection (Watson and Bachu, 2007). The leakage pathway is the third element required for a 
leak to occur.  
 

Wells are one possible pathway for CO2 to escape the storage formation (Celia and others, 
2004) (Figure 2). CO2 could leak along interfaces between different materials, such as the steel 
casing and cement interface (2a), cement plug and steel casing interface (2b), or rock and cement 
interface (2f). Leakage could also occur through cement (2c) or fractures in the cement (2d and 
2e). Finally, leakage may also occur because of casing corrosion and subsequent failure leading 
to large leakage pathways, with the wellbore as a conduit. 
 
 The goal of this study is to assign a relative risk score for deep and shallow well leakage 
for wells penetrating the basal Cambrian system on the U.S. side of the U.S.–Canadian border as 
part of DOE efforts to identify potential CO2 storage sites. It is important to note that the 
assignment of these relative leakage potential scores is solely for purposes of internally 
comparing and contrasting the different wellbores within this portion of the system. Stated 
differently, the assignment of individual relative leakage potential scores to the wellbores means  
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well. The well information was entered into a database for subsequent analysis and relative risk 
scoring of the individual wellbores. All wells were spatially referenced to permit the assessment 
of local or regional trends. 

 
 

REVIEW OF LEAKAGE RISK FACTORS 
 

Leakage pathways can be created during well construction, completion, production, and 
abandonment (Zhang and Bachu, 2011). In addition to material selection and engineering design, 
the physical implementation and accurate reporting of drilling, completion, and workover 
activities are equally important factors in assessing the integrity of an individual well, albeit they 
are difficult to quantify. For example, wellbore integrity could be compromised during 
cementing operations by a variety of factors such as poor mud displacement prior to cementing, 
gas migration during the cement setting, stress crack and microannulus formation during well 
operation, inaccurate cement volume calculations, or incomplete mud removal resulting in poor 
bonding to formation rock.  
 

The available well files offer information related to operations, such as notes from the field 
crew operating the well. However, data sets are often incomplete, lending to difficulties in 
determining the quality of cement placement during installation. An indication of the quality of 
cement placement may be found in pressure tests, cement bond logs, or operator notes. While the 
information may indicate a compromise in integrity, it also indicates that the operator was aware 
of the problem and most likely tried to rectify the situation, although the success of the repair 
may or may not be verified in the available documentation. There is also the uncertainty that the 
available well files may not always include information regarding problems with a well and may 
or may not include an indication of the quality of work performed. 
 

Despite the challenges in classifying the potential for well leakage based on well files, 
methodologies have been developed (Watson and Bachu, 2007, 2008; Bachu and others, 2012). 
These papers outlined an approach that was implemented in the Canadian province of Alberta 
based on similar well data and, importantly, surface casing vent flow (SCVF) and gas migration 
(GM) data beginning in 1995. These data were used to verify the methods developed to evaluate 
shallow well leakage potential. SCVF is leakage of gas to the surface casing vent valve (always 
open) on the wellhead, and GM is a measurement of leakage of gas out of the ground around the 
wellhead (Bachu and others, 2012).  
 

Watson and Bachu (2007) evaluated data for approximately 316,000 wells in Alberta in an 
area known to be subject to leaks to assess wellbore leakage risk based on a variety of criteria. 
They found that 4.5% of the wells evaluated had identified leaks, with SCVF accounting for 
3.9% and GM accounting for 0.6% of the identified leaks. After identifying the wells that had 
indications of leakage, they evaluated the specific well file data to determine which factors may 
be associated with the leak.  
 

Watson and Bachu (2008) and Bachu and others (2012) attempted to quantitatively classify 
the potential for shallow and deep wellbore leakage based on risk factors identified from their 
previous work in Watson and Bachu (2007). Shallow leakage refers to compromised hydraulic 
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well integrity in the upper portion of the well, where shallow gas, if present, may leak upward, 
along the outside of the casing/wellbore annulus to shallow freshwater aquifers or through a 
casing leak and along the inside of the production casing to the surface (Bachu and others, 2012). 
Deep leakage pertains to leakage along the deep part of the well from the CO2 storage zone to 
adjacent permeable horizons (Bachu and others, 2012). The deep and shallow leakage factors are 
described as follows. 
 

Bachu and others (2012) provided a numerical score for deep and shallow leakage 
potential. This score indicates the relative likelihood that any one well may leak based on the 
factors evaluated; however, the score does not reflect the volume or impact of the leak. 
Significant factors such as the quality of the cementing work were not included because of the 
lack of such data. As a result, Bachu and others (2012) identified low-risk wells that had a 
measured SCVF or GM leak. Likewise, wells ranked as higher-risk did not necessarily have a 
measured SCVF or GM leak identified. Therefore, it should be recognized that this method is 
useful as a screening-level evaluation for the leakage potential of a group of wells but is limited 
by the nature and extent of the available data. Areas targeted for CO2 injection should be 
evaluated and/or monitored on a site-by-site basis based on the unique risk factors for the given 
project.  
 

Deep Well Leakage Factors 
 

Deep leakage is defined as leakage (cross-flow) from a target production zone or CO2 
injection zone back into the wellbore (or outside the casing) where it moves upward into an 
adjacent permeable zone (productive zone or aquifer) (Bachu and others, 2012). The criteria that 
were used to assign deep leakage potential scores are described as follows.  
 

Fracture and Acid Treatments 
 

Fracture and acid criteria refer to the number of fracture and acid stimulation treatments 
performed in a well. These treatments are executed at high pressure and are believed to 
contribute to degradation of local hydraulic isolation (Bachu and others, 2012). Fracture 
treatments are designed to open cracks in the formation to allow oil or natural gas to flow back to 
the well. Matrix-acidizing treatments are used for two main purposes: 1) to stimulate a well to 
greater-than-ideal matrix reservoir flow or 2) to remove skin damage.  
 

Abandonment Types 
 

Wells in the study area are typically abandoned by using either cement plugs or cast iron 
bridge plugs. Cement plugs are generally considered more reliable; multiple cement plugs are 
placed to seal the well and prevent migration between formations. They are also considered more 
reliable in drilled and abandoned holes where there is no production casing run to the bottom of 
the hole because the cement plugs have been shown to bond and seal more efficiently to the 
irregular surface of the openhole environment (Watson and Bachu, 2007). Bridge plugs have 
been found to be more prone to corrosion and seal failure in the presence of CO2 (Bachu and 
others, 2012) because of CO2 effects on the elastomers and metal used in the mechanical 
plugging device (Watson and Bachu, 2007; Schremp and Roberson, 1975). 
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Completions 
 

Well perforations provide a communication pathway through the production casing in 
order to access the formation. However, perforations could compromise well integrity as the 
casing may not be sealed when squeezing cement into the perforations during abandonment. As 
the number of perforations increase, the statistical risk of leakage increases proportionately.  
 

Omitted Deep Well Leakage Factors 
 

Bachu and others (2012) formulated a list of well attributes that were considered indicators 
of potential deep wellbore leakage if present in the well. However, not all of these leakage 
factors were applicable in this particular study. These omitted leakage criteria are described as 
follows. 
 

Cement/Additive Types 
 

Numerous studies have focused on the interaction between cement and CO2, but these 
studies have been inconclusive (Bachu and others, 2012). On one hand, bench tests of cement 
exposed to CO2 and CO2–brine mixtures (e.g., Duguid and others, 2005; Duguid and Scherer, 
2010; Kutchko and others, 2007) indicate that the CO2 or CO2-saturated brine will react 
vigorously with the cement, degrading the cement’s ability to maintain vertical hydraulic 
isolation in the casing. However, other studies (Carey and others, 2007; Zhang and Bachu, 2011) 
suggest that cement with no fractures, voids, annulus gaps, etc., exposed to CO2 will form a 
carbonated, impermeable residue composed of Na–Al–Si. This impermeable residue forms a 
CO2 barrier, limiting degradation.  
 

Oil and natural gas industry cement practices have been influenced by advances in 
technology. Ide and others (2006) found that cement additives, used since the early 1950s, 
reduced the likelihood of well leakage. Cement additives fall into five categories: 1) density 
reduction material, 2) weight materials that increase density, 3) viscosifers, 4) filtration control, 
and 5) accelerators and retarders. These cement additives enable significant improvement to 
cementing practices, including the improvement to the curing of well cement. By targeting the 
cement system design to individual well requirements, the probability of well leakage is 
decreased.  
 

More recent studies (Watson and Bachu, 2008) found the addition of some additives, such 
as bentonite, increases the water-to-cement ratio, which may increase the cement porosity. The 
increased porosity leaves the cement vulnerable to an increase in the degradation rate of cement 
in CO2–brine solutions (Watson and Bachu, 2008; Kutchko and others, 2007). However, gels 
such as bentonite can improve the performance of cementing practices in the field, which could 
offset the risk of increased porosity. 
 

There is still debate as to cement’s role in wellbore integrity. While the type of cement and 
additives used may be important in determining the likelihood for leakage, the quality of the 
cement placement has an even higher impact on a well’s integrity. This factor was omitted as the 
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well files in the basal Cambrian study area lacked sufficient cement and additive data to evaluate 
wellbore integrity.  
 

Shallow Well Leakage Factors 
 

Shallow leakage refers to the well integrity in the upper portion of the well, where shallow 
gas, if present, may leak along the outside of the casing/wellbore annulus to shallow freshwater 
aquifers or through a casing leak and along the inside of the production casing to the surface 
(Bachu and others, 2012). It is important to note that potential gas leakage in this part of the well 
generally excludes CO2 gas. Potential CO2 injection would occur in basal Cambrian layers that 
are found in the deeper portions of the well, which would be accounted for in deep well leakage, 
with the exception of a potential fracture in the cap rock of the target formation, thus allowing 
CO2 to migrate from the intended storage zone.  
 

Within the realm of CCS, shallow well integrity is important in wells that potentially have 
a deep well leakage issue. In the hypothetical event that there was a CO2 leak from the bottom of 
the wellbore, the shallow well integrity could contribute to the location and impact of a fluid 
migration. 
 

Spud Date 
 

Oil prices can be used as a proxy for the level of drilling activity (Watson and Bachu, 
2007). As oil prices increase, the level of drilling activity increases, and with the increased 
activity, resources can become stressed. Watson and Bachu (2007) correlated increased leakage 
rates for plugged and abandoned wells in their study area with periods of increased activity. 
However, they noted that this trend tends to diverge after the year 2000 since the well spuds after 
this date, which is still within their productive lifespan, have a lower abandonment rate.  
 

Well Type 
 

The presence of hydrocarbons influences the characteristics of a well. Wells that are drilled 
and abandoned (D&A) reflect the fact that no hydrocarbons were found (or the hydrocarbons 
were not economically feasible to recover). Because of the lack of hydrocarbons, these wells 
have a surface casing but do not have production casing extending to the bottom of the hole. 
D&A wells are generally less prone to leakage (Bachu and others, 2012) because the cement 
plugs tend to bond and seal better against the irregular surface of the open hole.  
 

Cased well abandonments (CWAs) are wells abandoned after production casing has been 
cemented to partial or total depth and are found to be more prone to leakage (Bachu and others, 
2012; Watson and Bachu, 2007). CWAs are statistically more prone to leakage because the 
cement casing contains more potential leakage pathways (as illustrated in Figure 2) versus the 
cement plug in a D&A well. 
 

Drilled and cased wells contain production casing and are production or injection wells. 
These wells are considered susceptible to leakage (based on this study’s methods) since there 
have been no plugs placed in the well. However, these wells are more closely monitored and 
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remediated because of regulatory requirements if an issue arises, and the active wells will be 
plugged and abandoned at the end of their productive life. After abandonment, a reassessment of 
the well’s plug and abandonment procedures should be done to assign an updated relative 
leakage potential score.  
 

Well Total Depth 
 

As the total depth of a well surpasses 2500 meters (8202 feet), Bachu and others (2012) 
found that there is a slightly greater potential for leakage. This correlation was attributed to 
deeper wells having generally larger uncemented intervals between the top of the cement in the 
production string and surface casing, leaving potential hydrocarbon-bearing horizons above the 
target injection/production formation open to flow (Watson and Bachu, 2007).  
 

Additional Plug near Surface 
 

Setting an additional abandonment plug inside the well casing near the surface will 
augment shallow well integrity (Bachu and others, 2012) by providing another barrier to contain 
leakage that may occur in the well.  
 

Cement to Surface 
 

This criterion is a measure of how high in the casing borehole annulus production string 
cement was circulated. Bachu and others (2012) found that low cement tops are a major 
contributing factor to SCVF or GM leaks as drilling mud occupies the casing borehole annulus 
above the cement top. Drilling mud is a less effective barrier to gas leakage than cement (Bachu 
and others, 2012).  
 

Omitted Shallow Leakage Factors 
 

Bachu and others (2012) formulated a list of well attributes that were considered indicators 
of potential shallow wellbore leakage if present in the well. However, not all of these leakage 
factors were applicable in this particular study. These omitted leakage criteria are described as 
follows. 
 

Surface Casing Size 
 

Larger-diameter surface casing (greater than or equal to 244.5 mm, or 9.625 in.) has been 
observed to have a higher incidence of SCVF/GM leakage (Bachu and others, 2012). While there 
was an observed correlation in the SCVF/GM data, there was not sufficient research or other 
documentation providing insight as to the reasons for the correlation. Because of the inability to 
determine applicability to the study area, this factor was omitted. 
 

Abandonment Date 
 

Prior to 1995, the Canadian province of Alberta’s abandonment regulatory requirements 
did not include testing for SCVF/GM or groundwater protection. Bachu and others (2012) found 
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that wells that were abandoned prior to this year had a greater potential for wellbore leakage. 
However, this leakage factor only applies to Alberta and was omitted from this study. 
 

Geographic Location 
 

Bachu and others (2012) found a greater incidence of SCVF/GM within their “special test 
area” in Alberta. This special test area does not apply outside of their defined study and was 
omitted from this study. 
 

SCVF or GM 
 

Bachu and others (2012) assigned a leakage factor value if a well had measured SCVF or 
GM. The basal Cambrian study area wells do not have any data containing SCVF or GM, thus 
this factor was omitted from shallow leakage potential scoring.  
 

Casing Failure (leak) 
 

Bachu and others (2012) assigned a leakage factor value if a well had a documented casing 
failure or leak. While the basal Cambrian well files may have some documented cases of a 
casing collapse or other failure, the incidents noted in the well files often result in an attempt by 
the well’s operator to remedy the casing failure with pressure tests performed after these repairs 
to evaluate the success of the repair effort. If repairs to the wellbore are successful, the integrity 
of the repaired well relative to wells with no documented issues is difficult to assess. Based on 
these considerations, this leakage factor was omitted in this study.  
 
 
OVERVIEW OF THE BASAL CAMBRIAN WELL INTEGRITY STUDY 
 

Information was collected for 826 wells penetrating the basal Cambrian system across the 
states of Montana, North Dakota, and South Dakota, and available well files were analyzed. Well 
data were collected from each state agency as follows: Montana Board of Oil and Gas 
(MTBOG), North Dakota Industrial Commission (NDIC) Oil and Gas Division, and South 
Dakota Department of Environment and Natural Resources (SD DENR).  
 

Wells penetrating the basal Cambrian system were drilled between 1921 and 2010  
(Figure 3 and Table 1). The 1950s and 1980s yielded the highest frequency of wells drilled into 
the basal Cambrian system, ranging in depth up to 16,000 feet. Eighty-five percent of the wells 
are classified as plugged and abandoned; 14% are classified as active wells (production or 
injection); and the remaining 1% of the wells have been converted to water wells, been 
temporarily abandoned, or their status is unknown.  
 

Well completions were classified into three types (Table 2). D&A wells were drilled to 
depth and subsequently abandoned without running production casing. D&A wells with casing 
are similar to CWA (Bachu and others, 2012). These wells are drilled to depth, have production 
casing set, and are subsequently abandoned at the end of the well’s lifespan. Drilled and cased 
wells are active wells (production or injection wells) that contain a production casing. 
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Figure 3. Well spud dates by ddecade across th

 

 
he study area (soources: MTBOGG, NDIC, and SDD DENR). 
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Table 1. Spud Dates by Decade for Each State* 

Area 
Spud Date by Decade 

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010**
Montana 
Number of Wells 1 0 24 106 45 37 59 21 22 1 
Percentage of Wells 0.3 0.0 7.6 33.5 14.2 11.7 18.7 6.7 7.0 0.3 

  

North Dakota 
Number of Wells 0 0 4 112 25 59 165 18 14 0 
Percentage of Wells 0.0 0.0 1.0 28.2 6.3 14.9 41.6 4.5 3.5 0.0 

  

South Dakota 
Number of Wells 1 1 9 47 22 17 13 3 0 0 
Percentage of Wells 0.9 0.9 8.0 41.6 19.5 15.0 11.5 2.7 0.0 0.0 

  

Total 
Number of Wells 2 1 37 265 92 113 237 42 36 1 
Percentage of Wells 0.2 0.1 4.5 32.1 11.1 13.7 28.7 5.1 4.4 0.1 

  * Sources: MTBOG, NDIC, and SD DENR. 
** Limited data available for 2010 at time of data acquisition. 
 
 

Table 2. Casing Records for Basal Cambrian Study Area Wells 
Casing Record Number of Wells Percentage of Wells 
D&A 516 62.4 
Drilled, Abandoned, and Cased (CWA) 193 23.4 
Drilled and Cased (active) 117 14.2 

 
 

Records of cement type were lacking, with nearly 62% (Table 3) of the well files 
containing no data on cement type or additives. Of the wells with cement data available, 27% 
used a Class G cement (most common), 20% used “regular” cement (second most common), and 
the remaining 53% consisted of a variety of cement types. Regular cement most likely is a  
Class G, H, or C cement, although uncertainty exists. As a result, regular cement was not 
classified because of the lack of additional cement information. 
 
 
Table 3. Cement Records for Basal Cambrian Study Area Wells 

State 
Total Number  

of Wells 
Number of Wells with 

No Cement Record 
Percentage of Wells with  

No Cement Record 
South Dakota 113 82 72.5 
Montana 316 193 61.1 
North Dakota 397 235 59.2 
Total 826 510 61.7 
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RESULTS 
 

Deep Well Leakage Evaluation 
 

The risk factors that were evaluated are shown in Table 4. Each well received one score for 
each risk factor. The assignment of these scores is explained below. Individual scores were 
multiplied together to produce a final relative risk score for the well. The score is indicative of 
the relative potential for any one well to leak based upon the factors evaluated; it does not 
indicate the size or impact of a leak that may occur. The relative ranking of the deep leak 
potential (DLP) scores is shown in Table 5. 
 

Fracture Treatments 
 

Fracture treatments across the basal Cambrian study wells were rare (Table 6). South 
Dakota had only one well that received a fracture treatment, while Montana and North Dakota 
had 12 and 20 wells with fracture treatments, respectively. The fracture treatments appeared to 
focus in the western North Dakota and eastern Montana area (Figure 4). Fracture scores were 
calculated by counting the number of times a fracture treatment was performed at the well. Wells 
that received one fracture treatment were scored a 1.5, and wells with more than one fracture 
treatment were scored a 2.0 (Table 4).  
 
 
Table 4. Deep Leakage Risk Factors 
Deep Leakage Factor Criterion Meets Criterion Value Default Value 
Fracture Count = 1 1.5 1 
Fracture Count > 1 2 1 
Acid Count = 1 1.1 1 
Acid  Count = 2 1.2 1 
Acid Count > 2 1.5 1 
Abandonment Type Bridge plug 3 1 
Abandonment Type Not abandoned 2 1 
Abandonment Type Unknown 2 1 
Number of Completions Count = 1 1.5 1 
Number of Completions Count > 1 2 1 
* Modified from Bachu and others, 2012. 

 
 

Table 5. DLP Score Rankings 
DLP Score 
Minimal Potential <2 
Lower Potential 2–6 
Moderate Potential 6–10 
Higher Potential >10 
* Based on Watson and Bachu, 2008. 
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Acid Treatments 
 

Acid treatments were more frequent compared to fracture treatments. South Dakota had the 
least number of acid treatments, while North Dakota had the most (Table 7). Similarly to the 
fracture treatments, western North Dakota and eastern Montana show the greatest concentration 
of acid treatments for the area (Figure 5). Acid treatment scores were calculated by counting the 
number of times an acid treatment was performed at a well. Wells that received one acid 
treatment were scored a 1.1, two acid treatments were scored a 1.2, and more than two acid 
treatments were scored a 1.5 (Table 4). 
 

Abandonment Types 
 

Abandonment type was divided into four categories: bridge plug, unknown, cement plug, 
and active without plugs. Bridge plugs can be contained in abandoned wells (with or without 
cement plugs present) or active wells where bridge plugs were used to adjust the plug back 
depth. The bridge plugs carry the greatest risk for leakage as they are susceptible to corrosion 
and failure in the presence of CO2. Unknown wells were abandoned wells that had no 
abandonment procedures noted in the well files. Cement plugs, which are the least likely to result 
in loss of wellbore integrity, were the most common abandonment method in this study. Active 
wells without plugs are active producing or injecting wells where there is no cement or bridge 
plugs.  
 

The breakdown of abandonment types is shown in Table 8, and the spatial distribution is 
shown in Figure 6. The use of bridge plugs followed a similar pattern to fracture and acid 
treatments, with the greatest number of bridge plugs used in western North Dakota and eastern 
Montana. Abandonment type scores were determined by analyzing the plug and abandonment 
procedures given in the records available.  
 

Completions 
 

Perforations provide a communication pathway between the wellbore and formation. The 
risk for leakage is assumed to increase with the number of perforations. The highest 
concentration in perforations is found in western North Dakota and eastern Montana (Table 9 
and Figure 7). Completion scores were determined by counting the number of perforation 
intervals indicated in each well file’s completion reports. Wells with one completion interval 
were scored a 1.5, and wells with more than one completion interval were scored a 2.0 (Table 4).  
 

Deep Well Leakage Potential Scoring 
 

The overall deep well leakage score was calculated by multiplying the values for each of 
the deep well risk factors (Table 4). The overall score was then categorized as minimal potential, 
lower potential, moderate potential, and higher potential for deep well leakage (Table 5) 
(modified from Bachu and others, 2012). The deep well leakage scores for each state and overall 
are listed in Table 10. From Figure 8, it can be seen that the moderate-potential and higher-
potential wells are concentrated in western North Dakota and eastern Montana.  
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Shallow Well Leakage Evaluation 
 

The risk factors that were evaluated for shallow leakage potential are shown in Table 11. 
Each well received one score for each risk factor. These individual factor scores were then 
multiplied together to produce a final relative risk score for the well. The ranking of these 
shallow leakage potential (SLP) scores is shown in Table 12. 
 

Spud Date 
 

As oil prices increase, the level of drilling activity increases, and resources are often 
stressed, resulting in the potential for a decrease in the quality of work on wells drilled and 
completed. The years 1974–1986 correspond with a significant rise in oil prices and a large 
number of oil wells being drilled. Wells with spud dates in this range are considered to have a 
higher potential risk for well leakage (modified from Bachu and others, 2012).  
 

Approximately 38% of the wells (Table 13) drilled in the basal Cambrian system were 
drilled during the years 1974–1986. While there is a wide spatial distribution of wells across the 
study area during this time period, the highest concentrations of these wells were drilled in 
western North Dakota and eastern Montana (Figure 9).  
 
 
Table 11. Shallow Leakage Risk Factors* 
Shallow Leakage Factor Criterion Meets Criterion Value Default Value 
Spud Date 1974–1986 3 1 
Well Type Drilled and cased 8 1 
Well Type D&A with casing 3 1 
Well Total Depth >2500 m (8202 ft) 1.5 1 
Additional Plug No 3 1 
Additional Plug Unknown 2 1 
Cement to Surface No 5 1 
Cement to Surface Unknown 3 1 
* Modified from Bachu and others, 2012. 

 
 

Table 12. Ranking of SLP Scores* 
SLP Score 
Minimal Potential <50 
Lower Potential 50–200 
Moderate Potential 200–400 
Higher Potential >400 
* Based on Watson and Bachu, 2008. 
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Well Type 
 

The presence of production casing can have a significant impact on the potential for well 
leakage. Wells with production casing and no abandonment plugs are the most likely to leak, 
followed by wells with production casing and abandonment plugs. The preferred abandonment is 
an open hole with no production casing run, where cement plugs are more likely to bond and seal 
tightly against the irregular surface of the open hole (Bachu and others, 2012).  
 

Wells containing production casing (abandoned, active, or other) account for about 47% of 
the wells in the study area (Table 14), which are more prone to leakage compared to their 
openhole counterparts. A majority of these cased wells are found in the area of high oil well-
drilling activity, i.e., along the Montana–North Dakota border (Figure 10).  
 

Total Depth 
 

Bachu and others (2012) found that there is a slightly greater potential for leakage as the 
total depth of a well exceeds 2500 meters (8202 feet). The deeper wells typically have a larger 
uncemented interval between the top of the production string and surface casing, leaving 
potential hydrocarbon-bearing horizons above the target injection/production formation open to 
flow (Watson and Bachu, 2007). Approximately 53% of the wells in the study area exceeded  
2500 meters (Table 15). Wells exceeding 2500 meters were found primarily in western North 
Dakota and eastern Montana (Figure 11). As expected, this follows the contour of the Williston 
Basin, which is deepest in western North Dakota and eastern Montana. 
 

Additional Plug near Surface 
 

Setting an additional abandonment plug inside the well casing near the surface will 
augment shallow well integrity (Bachu and others, 2012) by providing another opportunity to 
contain any potential leaks within the well. An additional plug near the surface is a “last line of 
defense” in containing any leaks that may have infiltrated the wellbore. 
 

Twenty-six percent of the wells across the study area do not have an additional plug near 
the surface to improve well integrity (Table 16). However, it is important to note that 57.5% of 
these wells are currently active or temporarily abandoned; thus this number most likely will be 
reduced as wells are abandoned at the end of their productive life. The wells without a plug near 
the surface are uniformly distributed across the study region (Figure 12). There are a number of 
wells in the western North Dakota–eastern Montana area that correspond to active wells. 
 

Cement to Surface 
 

Bachu and others (2012) found that low cement tops are a significant contributing factor to 
SCVF and GM leaks. However, in general, data are lacking regarding the TOC in the study area. 
Some of the well files provide measured or calculated TOC, while others provide the number of 
sacks that were used during the cementing of the wellbore. Calculating TOC based on sacks of 
cement introduces a degree of uncertainty in the calculations. The exact cement type, cement 
density, annulus volume, and sacks of cement need to be correct for an accurate calculation. 
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Errors in calculating TOC may occur as many wells did not identify the cement type, which 
would lead to an estimated density, and others only provided estimates of the number of sacks of 
cement that were used, with not all sacks of cement actually being placed in the hole. These 
errors can lead to estimates of the TOC that could affect the calculated TOC by  
200 feet or more. Unless the TOC was given in the well file, TOC values were not calculated as 
part of this study.  
 

The breakdown of wells that were cemented to the surface is shown in Table 17. Wells that 
contained no production casing were identified as being cemented to the surface, since the 
surface casing reached the top of the well. Wells that received a “no” have production casing 
present, and the given TOC value did not reach the surface casing shoe. Unknown wells 
contained a production casing but did not have TOC values provided. The distribution of wells 
that were not cemented to the surface were concentrated in the western North Dakota–eastern 
Montana region where a large percentage of wells contain production casing (Figure 13). The 
cementing program used for these deep wells often led to TOC values below the base of the 
surface casing.  
 

Shallow Well Leakage Potential Scoring 
 

Shallow leakage refers to the well integrity in the upper portion of the well, above the 
TOC, where shallow gas may leak along the outside of the casing/wellbore annulus to shallow 
freshwater aquifers or through a casing leak and along the inside of the production casing to the 
surface (Bachu and others, 2012). The shallow leakage potential score was calculated by 
multiplying the values of the six shallow leakage factors. The score is indicative of the potential 
for any one well to leak based on the factors evaluated; it does not indicate the size or impact of a 
leak that may occur.  
 

Of the wells evaluated, 6.0% have a moderate or higher potential for shallow leakage  
(Table 18) based on the study methods and available data. Figure 14 shows that the majority of 
higher- and moderate-potential wells are found in the western North Dakota–eastern Montana 
area. The locations of these wells are known to be an area of intensive oil and gas exploration 
and production. The practice of producing oil and gas from these wells has increased the shallow 
well leakage potential scores.  
 

Comparison of Deep Well and Shallow Well Leakage Potential 
 

Deep and shallow well leakage potential scores provide a means of screening relative 
leakage potential in either the deep or shallow portions of a well. However, these scores may be 
combined to assess the complete leakage potential, i.e., deep to shallow leakage, for a well. One 
concern during the geological storage of CO2 is the fate of the CO2 in the subsurface following 
injection. A well that poses a higher potential for both deep well leakage and shallow well 
leakage would be more likely to impact groundwater aquifers and/or result in surface releases 
than would a well with only a higher potential for deep or shallow leakage. To assess this 
potential, the number of wells in the study area that have moderate- or higher-potential deep and 
shallow well leakage scores is presented in Table 19; spatial distribution of these wells across the 
study area is presented in Figure 15.  
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SUMMARY 
 

For CCS to be successful, a CO2 storage formation needs to meet three fundamental 
conditions: 1) capacity, 2) injectivity, and 3) confinement (Zhang and Bachu, 2011; Bachu, 2003, 
2010; Intergovernmental Panel on Climate Change, 2005). One component of confinement is  
evaluated based on the integrity of wellbores that penetrate the storage formation. Wellbore 
integrity is the ability of a well to maintain hydraulic isolation of geologic formations and 
prevent the vertical migration of fluids (Zhang and Bachu, 2011; Crow and others, 2010). 
Wellbore integrity is crucial because leakage of CO2 may pose a potential risk to surrounding 
groundwater, vegetation, or wildlife and to accurately account for injected CO2. 
 

Eight hundred twenty-six wells penetrate the basal Cambrian system across Montana, 
North Dakota, and South Dakota which were drilled between 1921 and 2010. These wells were 
analyzed to assess the deep and shallow well leak potential by modifying methods developed by 
Bachu and others (2012) and Bachu and Watson (2008). Deep leakage is defined as leakage 
(cross-flow) from a target production zone or CO2 injection zone into the wellbore (or outside 
the casing) and vertically into an adjacent permeable zone (productive zone or aquifer) (Bachu 
and others, 2012). Deep leakage risk factors, including fracture and acid treatments, 
abandonment plug type, and completions, were used to compile an overall deep well leakage 
potential score. The deep well leakage potential is classified from minimal potential to higher 
potential (Table 5), which indicates the relative likelihood of a leak happening based on the 
evaluation criteria. Shallow well risk factors used to produce a shallow well leakage potential 
score include spud date, well type, total well depth, existence of an additional plug near the 
surface, and depth of TOC. The shallow well leakage potential is classified from minimal to 
higher potential (Table 12). The SLP and DLP scores do not indicate the size or impact of a leak 
that might occur but only the relative probability of a leak occurring.  
 

Fifteen percent (Table 10) of the wells assessed were classified as moderate or higher 
potential for deep well leakage, and 6.0% of the wells (Table 18) classified the same for shallow 
well leakage. 3.4% (Table 19) of the wells exhibited moderate or higher potential for shallow 
and deep leakage. The majority of the moderate- or higher-potential wells, for both DLP and 
SLP, are located in western North Dakota and eastern Montana (Figures 9, 14, and 15). The 
locations of these wells are known to be an area of intensive oil and gas exploration and 
production. The practice of producing oil and gas from these wells has increased the well leakage 
potential (based on the available data and methods utilized), and, in the event of a future CCS 
project, would require additional screening criteria.  
 

When looking at the deep well leakage potential, the wells with the lowest potential were 
frequently dry holes, which did not receive any perforations, fracture treatments, or acid 
treatments. These dry holes were frequently abandoned using cement plugs that seal more 
efficiently against the irregular wall of the open hole. Many of the minimal potential wells were 
drilled during the 1960s or earlier when a majority of wells were drilled in search of oil and often 
produced no hydrocarbons.  
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 The 1970s and 1980s showed an increase in focus in the western North Dakota and eastern 
Montana area as oil was discovered and the demand was high, increasing oil prices. The success 
in finding oil in this area led to increased perforations, acid treatments, and occasional fracturing. 
This activity directly contributed to the increase in the shallow and deep well leakage potential 
score. 
 
 While these methods indicate a higher relative potential for well leakage (based on the 
analysis assumptions and scoring assigned), the quality of the drilling, casing, cementing, and 
completion practices is extremely important in determining the actual (as opposed to relative) 
potential of a well leaking. The study methods provide a good screening-level assessment to 
rank wells that may require further investigation as part of a CCS project. The ranking of the 
relative leakage potential provides a mechanism to screen wells for detailed evaluation in 
areas being targeted for CO2 injection. Potentially leaking or high-risk wells could be 
addressed using established remediation programs employing current well mitigation 
technologies or appropriate monitoring during CO2 injection. 
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