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EERC DISCLAIMER 
 
 LEGAL NOTICE This research report was prepared by the Energy & Environmental 
Research Center (EERC), an agency of the University of North Dakota, as an account of work 
sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory 
(NETL). Because of the research nature of the work performed, neither the EERC nor any of its 
employees makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement 
or recommendation by the EERC. 
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grouped into 16 geographic areas that have a combined annual emission of 104 Mt. With this in 
mind, the first injection scenario considered seven cases where the target was to inject this total 
mass of CO2 for 36 or 50 years in the 16 injection areas using a total of 210 wells. Results from 
these cases show a total mass of CO2 injected ranging from 82 to 1412 Mt across the injection 
period of 36 and 50 years. These values represent between 2.2% and 27.2% of the available CO2 
emitted from the 16 source locations. In the second scenario, eight new cases where the original 
16 injection locations were disaggregated and moved (pipelined) to areas defined by the model 
as having good reservoir volume connection (geobodies) based on permeabilities greater than  
50 mD. Injection amounts in the second scenario range from 1949 to 3112 Mt of CO2. These 
values represent 37.5% to 59.8% of the CO2 emitted from the source locations. Based on the 
results of both scenarios, the selection of areas with better permeability and connected volume 
had a large impact on increasing the total amount of CO2 stored and the per well injection rates. 
However, even in the better area, the COSS was not able to support 21l injection wells with an 
average injection rate of 0.5 Mt/yr. In the second scenario, the average annual per well injection 
rate was between 185,000 and 275,000 tons/yr. At these injection rates, a total of 378 to  
563 wells would have been required to meet the injection target. Pressure differences monitored 
in the second scenario show small changes in the 50-year injection time period. These minimal 
pressure differences indicate small risks of leakage from the reservoir and integrity of the sealing 
cap rock due to CO2 injection in the COSS.  
 

The results of the static CO2 storage resource estimate indicate that the COSS has 
thousands of years of storage potential at the current point source CO2 emission levels. However, 
the actual task of injecting the annual emissions is more difficult. Results from simulation 
indicate that injecting all the point source CO2 in an area directly beneath the sources using  
210 wells did not result in meeting the storage target. With that in mind, the COSS model and 
simulations were run on limited data, and just because these simulation cases indicated that the 
injection volumes, as a whole, could not be reached does not mean that the geology around a 
particular CO2 source is poor. These results indicate that there is sufficient storage potential in 
the COSS to store all of the current point source CO2 emissions for at least the next 50 years; 
however, more wells will likely be needed and spread out over more of the COSS to achieve this 
goal. 
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understanding about the subsurface in oil- and gas-producing areas. The potential downside is 
that the numerous wells that have been drilled in those areas may diminish storage security 
(Bachu and others, 2011). Deep saline formations have the advantage of being much more 
widespread and, theoretically, have correspondingly larger storage capacities than the other 
geologic media. 
 
 In the United States and Canada, various studies have been initiated for more than a decade 
to estimate the CO2 storage resource at the country or regional level. Regional characterization 
efforts of the PCOR Partnership project have conducted several regional and local investigations 
to evaluate the CO2 storage resource potential of deep saline formations in the Denver–Julesburg 
and Williston Basins. The formations investigated in these evaluations include the carbonates of 
the Madison and Red River Formations and the siliciclastics of the Deadwood, Black Island, 
Broom Creek, Newcastle, and Inyan Kara Formations in the Williston Basin. In the Denver–
Julesburg Basin, the sandstones of the Maha Formation were evaluated for CO2 storage resource 
potential. Bachu and Adams (2003) have estimated the storage resource for the carbonate Keg 
River and siliciclastic Viking saline formations in the Alberta Basin. The results of that specific 
work were also included in the CO2 resource of the PCOR Partnership as reported to DOE for 
inclusion into the Carbon Sequestration Atlas of the United States and Canada (U.S. Department 
of Energy Office of Fossil Energy, 2007, 2008, 2010).  
 
 Work conducted in 2010 and 2011 by the Geological Survey of Canada (GSC) regarding 
the CO2 storage potential and resource in Canada has identified the Alberta Basin and the 
Canadian part of the Williston Basin as the region in Canada with the greatest potential for CCS 
implementation. In those basins, the GSC has applied DOE’s methodology (U.S. Department of 
Energy Office of Fossil Energy, 2008) to several saline formations, namely, the Elk Point, 
Beaverhill Lake, Woodbend, Winterburn, and Rundle–Charles Formations. The storage resource 
values derived in this work by GSC were included in the 4th edition (revised) of the PCOR 
Partnership Atlas (Peck and others, 2013) and the North American Atlas of CO2 Storage 
Capacity (Bachu and others, 2011). Frequent and unfortunate by-products of the individual 
efforts conducted in this central interior portion of North America are evaluations and related 
maps that show a “fault line” (discontinuity) at the U.S.–Canadian border. Evaluating the 
resource and effects of CO2 storage in the Canadian or U.S. portions of the Williston Basin 
should not be done in isolation. The regional geology of sedimentary basins is not influenced by 
political boundaries.  
 
 Energy production from fossil fuels is generally associated with sedimentary basins, and it 
is these same sedimentary basins that contain the geologic media suitable for CO2 storage. This 
juxtaposition of large stationary sources of CO2 and potential geologic storage targets makes for 
an opportune geographic relationship, and sixteen of these aggregated sources were used for the 
dynamic simulation. The COSS is the storage target for Shell’s Quest project near Edmonton, 
Alberta, and the Aquistore project near Estevan, Saskatchewan. It is very possible that many 
large CO2 emitters in the northern Great Plains–Prairie region of North America will choose to 
store CO2 in this saline system because of its apparent large storage resource and because it is 
penetrated by relatively few wells, thus increasing the security of CO2 storage. However, the 
storage resource of this saline system has not been previously thoroughly evaluated.  
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 To address the evaluation and consideration of this extensive saline system and viability as 
a potential sink, the following objectives were established to be determined from the results of 
the static model creation and dynamic simulation: 1) assess the volumetric static CO2 storage 
resource of the northern Great Plains–Prairie basal saline system based on its geometry, internal 
architecture, lithology, relative permeability and porosity, and temperature and pressure 
distributions; 2) assess the dynamic storage capacity of the saline system assuming that the  
16 major large CO2 sources located above or in close vicinity to this saline system will choose it 
for CO2 storage during their respective lifetimes; and 3) assess the effect of pressure-related 
changes related to the injection of large volumes of CO2. 
 
 
STATIC MODEL  
 
 Different than the 2-D model completed in Phase II, the 3-D geocellular model takes into 
account the internal heterogeneity of complex facies relationships that exist vertically and 
laterally throughout the COSS. The goal of the modeling activities is to assess the volumetric 
CO2 storage of the system based on its geometry, internal architecture, lithology, permeability 
and porosity, and temperature and pressure distributions. In addition, the geocellular model is 
also used for the dynamic simulation portion to determine dynamic storage and the effects of 
reservoir pressure buildup.  
 
 The complexity of the reservoir was characterized from numerous sources of data. Well 
data used in the development of the 3-D model across the U.S. portion of the basal saline system 
were obtained from the online databases of the North Dakota Industrial Commission and the 
Montana Board of Oil and Gas. Data were also obtained from the Montana Geological Society 
and the South Dakota Geologic Survey. Data from these organizations included formation tops, 
well files, which included core measurements, and wireline logs in raster and, in many cases, 
Log ASCII (LAS) format. Other forms of data were included from Bachu and others (2011) who 
went through a similar process to characterize the basal saline system in Canada. Figure 2 shows 
a general workflow for the 3-D model construction of the basal saline system. 
 

Study Area 
 
 The central interior portion of North America covered in this report encompasses the 
northern Great Plains–Prairie region of the United States and the southern Interior Plains of 
Canada. This region of North America is generally characterized by broad expanses of relatively 
flat land covered by prairie, steppe, and grassland and is bounded by the Canadian Shield to the 
northeast, the Rocky Mountains to the west, and the central lowlands of Minnesota and Iowa to 
the southeast. In addition to the strong agricultural focus, this region is also home to a robust 
energy industry that includes coal, oil, and gas development. The abundant energy resources of 
this area have resulted in the establishment of many large-scale CO2 sources such as coal-fired 
power plants and refineries. 
 
 Similar to the Mt. Simon Formation that overlies the Precambrian crystalline basement in 
the U.S. Midwest (Leetaru and McBride, 2009; Barnes and others, 2009), the COSS overlies the  
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Figure 2. Workfflow method us
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Precambrian basement in the northern Great Plains–Prairie region, extending from north of 
Edmonton, Alberta, to South Dakota and covering a combined area of ~517,000 sq mi. The 
Canadian part of the saline system covers 313,285 sq mi, and the U.S. part covers  
~195,814 sq mi (Figure 3). Given its reservoir characteristics and extent, this basal saline system 
should be considered as a prime target for the storage of CO2 from large stationary sources in the 
northern Great Plains and Prairie region. In addition, most of the Cambrian to Silurian strata at 
the base of the sedimentary succession in Williston and Alberta Basins do not contain fossil fuels 
and also has limited prospects for unconventional oil or gas production, and as such, little of the 
prospective storage space is leased.  
 

Stratigraphic Correlation 
 
 The greater Williston Basin area has been explored for oil and gas resources for over  
70 years and thus has had a large number of wells drilled into it. However, only wells that 
penetrated the contact of the Black Island and overlying Ice Box Formations or deeper were 
examined in this study for stratigraphic correlation. Of primary importance with respect to the 
wells was the availability of LAS files which provide for a wide range of analytical capability 
when incorporated into the modeling workflow. Ninety-four of the well control points had LAS 
files available and were either obtained from the respective state agency or acquired from the 
TGS-NOPEC Geophysical Company (TGS). Such files were used to provide quality control 
(QC) and correlate the basal saline system across this large area. 
 
 The basal saline system comprises several diachronous rock units of variable lithology: the 
Middle Cambrian Basal Sandstone in the Alberta Basin adjacent to the Late Cambrian 
Deadwood and Early Ordovician Black Island Formation in Saskatchewan, Manitoba, and the 
Dakotas. These strata are overlain by Upper Ordovician and Lower Silurian carbonates. The 
basal saline system is overlain by Cambrian shales in the Alberta Basin and by Ordovician shales 
or Middle Devonian tight shaley carbonates in the Williston Basin. The basal saline system 
reaches depths of more than 16,000 ft near the Rocky Mountain Thrust and Fold belt in the 
Alberta Basin, and nearly 16,000 ft at the depocenter of the Williston Basin. The rock sequence 
crops out and is a source of fresh groundwater in south-central to southeastern Manitoba (e.g., 
Ferguson and others, 2007) and in South Dakota and Montana (Figure 4). 
 
 The vast extent and thickness of the model contribute to the large effort to characterize the 
basal saline system because of changes in nomenclature and the sparse data available from the 
relative absence of oil and gas development compared to other stratigraphically oil-bearing zones 
in this region. The nomenclature for these alternating beds of fine siliciclastics and carbonates 
varies throughout the study area. In parts of Montana and Wyoming, they are referred to as the 
Gros Ventre and Gallatin Groups and are equivalent to parts of the Emerson Formation in the 
Little Rocky Mountains area of Montana and the Deadwood Formation in North and South 
Dakota. The Gros Ventre Group is made up of the Wolsey Shale, the Meagher Limestone, and 
the Park Shale. The Gallatin Group consists of the Pilgrim Limestone, the Snowy Range 
Formation (which consists of the Dry Creek Shale and the Sage Pebble Conglomerate), and the 
Grove Creek Limestone (which is sometimes included within the Snowy Range Formation) 
(Macke, 1993) (Figures 3 and 4).  
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Multimineral Petrophysical Analysis 
 
 An MMPA is typically conducted to determine the complexity of oil and gas reservoirs 
and the effects the overall mineral content has on fluid movement and production estimates. 
Mineral composition ultimately determines the rock’s physical parameters which can be used as 
a tool to determine the overall characteristics of the reservoir and the depositional environment. 
The Quanti.Elan module calculates the overall volume of different mineral components in each 
wellbore. The mineral volume calculation aids in determining the stratigraphy and the overall 
correlation from one wellbore to another, thus describing the lithological stratigraphy for 
property distribution in the 3-D model.  
 
 The Quanti.Elan module uses sequential quadratic programming to solve nonlinear 
problems from log measurements and outputs the mineralogy of the formation being evaluated. 
Prior to inversion, to optimize the model and results, the geological environment was determined 
through core analysis and x-ray diffraction to predefine the system for the mineralogical 
components. This analysis helped populate the geologic 3-D model with lithology and 
corresponding petrophysical properties. 
 
 Mineralogical core samples evaluated in this study for the basal saline system range from 
clastic, well-sorted quartz sandstone to medium energy fossiliferous carbonates. Many samples 
from the petrographic analysis demonstrated secondary mineralization, mainly, dolomite and 
glauconite. Other mineral components reported in mud logs indicate traces of pyrite. The mineral 
assemblage of quartz, calcite, dolomite, glauconite, pyrite, and clays helped predefine the system 
prior to the inversion process. Because the model comprises such a large area, the changes in 
mineralogy for the basal saline system helped identify major zones comprising sand, carbonates, 
shale, and silty zones. Additional key properties calculated from the MMPA process include pore 
fluid volumes and effective and total porosities. 
 
 The primary QC mechanism for the results is the use of the reconstructed logs created by 
the inversion process. After inversion, the results went through a quality check process by 
crossplotting the reconstructed logs made by the inversion process with the geophysical wireline 
logs. Additionally, the results of the core porosity measured in the lab and the effective porosity 
calculated from the MMPA were crossplotted as a quality check (Figure 6). Changes to the 
mineral’s property end points were adjusted accordingly until crossplotted results had an 
acceptable line of regression and approached a line of best fit. Once the inversion process was 
complete, each system underwent a quality check. Although reconstructed logs are the optimum 
mechanism for quality check, the user should have an understanding of the geologic 
environment. Other data may fit the model, which is why the system should be predefined from 
the analysis of core and/or x-ray diffraction.  
 
 Seen in Figure 7, the Quanti.Elan reconstructed logs are crossplotted with the measured 
wireline logs. Different zones are created in the log where results are not near the y = x line. 
Mineral physical properties may be changed to achieve these results in areas not representative 
of the properties determined from the core calibration. Satisfactory quality check of the 
mineralogy and other petrophysical determinations occurs when the line of regression 
approaches a slope of one. 
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 Results of the MMPA built the stratigraphy for each well comprising Black Island 
sandstone and alternating layers of carbonates, sandstones, and shale of the Deadwood 
Formation. Figure 8 shows the lithology for a well evaluated in North Dakota from the top to the 
base of the aquifer. Changes from one well to another can be vastly different because of the large 
aerial extent of this project and the distance between wells evaluated.  
 

Structural Model 
 
 The structural model was built to capture the changes in thickness of the saline system and 
structural characteristics. Overall, the relief of the Precambrian basement and reactivation of 
various structures have affected thickness, porosity, and facies distribution of the basal saline 
system. Utilizing the tops picked from the stratigraphic analysis, structural surfaces of the basal 
saline system were built using a kriging approach using Schlumberger’s Petrel. 
 
 Probably the most significant of the structural features affecting the deposited sediments of 
the basal saline system is the subsidence of the Williston Basin which occurred as early as the 
Late Cambrian to Early Ordovician and steadily continued to the Jurassic (Kent, 1987). Seen in 
Figure 9, the structural surfaces show the subsidence of the Williston and Alberta Basins 
reaching depths >12,000 ft below sea level. This subsidence has a large effect on notable 
characteristics of the basal saline system’s reservoir properties. 
 
 Other notable structures affecting deposition include the Transcontinental Arch, a 
northeast-trending structure, and the Nesson Anticline, a north south trending structure. Both 
structures were Precambrian highs before transgression of the Cambrian Sea, causing the 
Deadwood Formation and Winnipeg Group to onlap these structures during deposition. 
However, sediments are thin or nonexistent on the structure because of postdepositional erosion. 
Many other structures within the study area did not form until after the Silurian and, therefore, 
did not significantly affect deposition of the Deadwood, Winnipeg, and their equivalent 
formations. However, many of these post (Cambro/Ordovician) depositional uplifts have become 
outcrop areas for Ordovician, Cambrian, and even Precambrian rocks. Many of these uplifts now 
act as recharge areas, such as the Central Montana uplift, the Black Hills, the Big Horn 
Mountains, the Little Rocky Mountains, and the Big Snowy Mountains. Others act as subsurface 
structural barriers between sedimentary basins. The Sweetgrass/Bow Island Arch separates the 
Williston Basin from the Alberta Basin, and the Miles City Arch separates the Williston Basin 
from the Powder River Basin. 
 
 The thickness of the basal saline system is highly variable. Sedimentation kept up with 
subsidence throughout deposition of the system, which is the main reason the thickest sections of 
most formations are located near the center of the basin (Figure 10). An isopach map was created 
from data produced from thickness points from wells that penetrated both the aquifer top and 
Precambrian basement. Because of the limitation of penetrating wells into the Precambrian, the 
isopach map and outcrop locations helped structurally control the base of the aquifer (i.e., top of 
the Precambrian).  
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of 1 was populated throughout the model, resulting in the absence of oil and gas. Although oil 
and gas are present in the reservoir, determining exactly how they are distributed in the model is 
a challenge. Because this model is a basin-scale model and not a reservoir-scale model, the large 
distance between wells delivers high uncertainty in determining the distribution of oil and gas in 
areas away from the wellbore.  
 

Water Salinity 
 
 The formation waters in these saline systems range widely with respect to total dissolved 
solids (TDS). In the central portion of the Williston Basin, TDS levels reach nearly  
350,000 ppm for the COSS (Downey and Dinwiddie, 1988). These levels taper off toward the 
basin margins where TDS levels are in the 5000–10,000-ppm range. The lower TDS values 
reflect the impact of freshwater recharge on water quality. The U.S. Environmental Protection 
Agency (EPA) defines potable water as having TDS levels less than 3000 ppm and underground 
sources of drinking water as having less than 10,000 ppm (U.S. Environmental Protection 
Agency, 2012). EPA definitions classify a large portion of the waters in the northern Great Plains 
aquifer system and, in particular, the COSS as not being underground sources of drinking water. 
 
 Water salinity in the model was determined from measurements and salinity 
determinations by Bachu and others (2011). The purple boundary in Figure 28 represents the 
10,000 TDS line where in this area water is termed to be freshwater and injection cannot occur 
because of the water’s use for agriculture, industry, or residential. Generally salinity increases 
with depth of the basal saline system where salinity varies from ~500 to ~350,000 ppm between 
the aquifer outcrop areas and in the deep areas of the Williston and Alberta Basins. In areas 
where this trend does not exist, the basal saline system water may be near recharge areas or is 
mixing from communication with overlying saline systems (Bachu and others, 2011).  
 

CO2 Storage Potential 
 

CO2 Storage Classification 
 
 The classification of CO2 storage and the terminology that has evolved are intended to 
provide a comparable basis for assessing CO2 storage potential from regulatory and business 
perspectives. The definitions of the terms are meant to convey varying degrees of confidence in 
the storage assessment values that are generated.  
 
 A hierarchy of classification terminology has been developed over the past 5 years that 
leverages increasing confidence with increasing data and a smaller geographic area of interest. 
These relationships were first illustrated by the techno-economic resource–reserve pyramid 
defined by the Carbon Sequestration Leadership Forum (CSLF) (2007). This graphical 
representation of terms shows the trend from broad-based resource estimations to small-scale, 
site-specific characterizations (Figure 29), each with differing degrees of certainty. Moving up 
the pyramid requires more detailed data in a more focused geographic extent along with the 
application of increasing constraints such as technical, geological, and economic to the CO2 
storage capacity, as defined by CSLF.  
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 Gorecki and others (2009) proposed a refined classification incorporating terms defined by 
DOE (U.S. Department of Energy Office of Fossil Energy, 2008) that distinguish between 
storage estimates defined by physical and chemical constraints (resource) and those with added 
economic and regulatory constraints (capacity) (Figure 30). The first two divisions within this 
proposed classification framework, theoretical and characterized storage resource, are equivalent 
to the theoretical capacity of the CSLF pyramid. The effective storage resource refines the 
broader level estimates by integrating geologic and engineering limitations. This level is 
equivalent to the CSLF’s definition of effective storage capacity, although here it is defined as a 
resource since economic considerations have not been implemented.  
 
 As mentioned earlier, the approach to estimating the CO2 storage volume, as well as the 
required level of detail for the required data, will vary depending on the geographic scale of the 
assessment effort. In its Phase 2 final report, CSLF (2007) presented five terms representing 
scales of geographic extent for the assessment of CO2 storage. These terms, in order of 
decreasing area, are country, basin, region, local, and site. Confidence in the calculated storage 
potential increases as the geographic scale decreases. Gorecki and others (2009) augment this 
geographic hierarchy by incorporating a level of spatial scale as defined by political subdivisions 
(Figure 31). Using the terminology presented in the previous paragraphs, this study attempts to 
estimate the effective storage resource of the COSS at the basin/regional scale across the 
northern Great Plains and Prairie regions of the central interior of North America. 
 

Static Capacity of the Basal Saline System 
 
 The methodology used in this study follows the approach described in DOE Atlas III (U.S. 
Department of Energy Office of Fossil Energy, 2010) which builds on the IEAGHG work of 
Gorecki and others (2009). It is based on the volumetric approach for estimating CO2 storage 
resource potential saline formations. The volumetric equation to calculate the CO2 storage 
resource mass estimate for geologic storage in saline formations is:  
 
 MCO2e = A × h × φ × ρCO2 × EE [Eq. 5] 
 
 The total area (A), gross formation thickness (h), and total porosity (φ) terms account for 
the total bulk volume of pore space available. The value for CO2 density (ρ) converts the 
reservoir volume of CO2 to mass. The storage efficiency factor (E) reflects the fraction of the 
total pore volume that will be occupied by the injected CO2. For saline formations, the CO2 
storage efficiency factor (EE) is a function of geologic parameters (Egeol), such as area, gross 
thickness, and total porosity, that reflect the percentage of volume amenable to CO2 
sequestration and displacement efficiency components (EVED) that reflect different physical 
barriers inhibiting CO2 from contacting 100% of the pore volume of a given basin or region 
(Equations 6 and 7). Volumetric methods are applied when it is generally assumed that the 
formation is open and that formation fluids are displaced from the formation or managed via 
production. The COSS is assumed to be an open system for the purpose of this study. A 
comprehensive discussion of the derivation of the methodology and the efficiency factor is 
presented in Gorecki and others (2009), U.S. Department of Energy Office of Fossil Energy 
(2010), and Goodman and others (2011). 
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Table 3. Aggregated CO2 Sources Location, Plant Type, and Annual CO2 Output Used in 
the Injection Scenarios During Dynamic Simulation 

Plant 
State/ 

Province Plant Type 
Total 

Annual CO2 ID No. 
Cold Lake–Bonnyville AB Petroleum and natural gas 8.3 1 
Shell Quest AB Mixed 1.2 2 
Edmonton/Redwater AB Mixed 9.7 3 
Duffield–Warburg AB Electric generation 23.0 4 
Lloydminster AB Electric generation 2.1 5 
Joffre–Forestburg AB Petroleum and natural gas 7.1 6 
Hanna AB Electric generation 4.4 7 
CCRL/NEI Refinery-Upgrader 

Complex 
SK Petroleum and natural gas 1.7 8 

Medicine Hat–Empress AB Mixed 5.2 9 
Boundary Dam Power Station SK Electric generation 8.6 10 
Poplar River Power Station SK Electric generation 3.8 11 
Coal Creek ND Electric generation 8.9 12 
Antelope Valley/Dakota 

Gasification Company 
ND Multiple 8.0 13 

Leland Olds/Stanton ND Electric generation 4.3 14 
Coyote ND Electric generation 2.8 15 
Milton R. Young ND Electric generation 5.3 16 
 
 

Static Model Upscaling 
 
 The static model discussed in the previous section serves as the basis for the CO2 injection 
simulations. The base grid of the static model was constructed with 2250-ft2 grid blocks with  
25 proportional vertical layers. Because of the large aerial extent of the saline system, the base 
grid resulted in a ~115-million-cell geocellular model. In order to efficiently investigate multiple 
dynamic simulation scenarios, the number of cells (complexity) of the static model was reduced 
through upscaling and grid refinement. The study area, mentioned in detail in the previous 
sections of this report, includes sixteen aggregated large-scale CO2 sources that emit over 1 Mt 
of CO2 annually. Injection wells were placed at the locations of the CO2 sources and used as the 
center point for the grid refinement in the model. Originally, the grid was upscaled with five 
different gridding intervals radiating away from the injection points. Although the five local grid 
refinements were ideal, there were issues bringing the multilayer refinement into CMG for 
simulation using Petrel’s rescue format. To avoid this issue, the aerial extent of the original 
geocellular grid was upscaled from 2250’ × 2250’ to 7000’ × 7000’ in a ~20-mile radius around 
each CO2 source point and upscaled to 35,000’ × 35,000’ in the outer areas of the study region 
(Figure 36). This allowed for heterogeneity to be kept within the polygons where the injection 
wells are placed. This process upscaled the properties using different averaging techniques to 
redistribute the petrophysical properties from the base grid.  
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than 300,000 ppm. The fluid settings in the dynamic simulation correspond with the static model 
to determine the dissolution of CO2 in the brine mixture. Henry’s Law constant was correlated by 
Harvey’s method to determine the solubility coefficient of CO2 in the brine. Aqueous density and 
viscosity of the fluids were correlated by using the Rowe–Chou and Kestin methods, 
respectively, over the varying temperatures and pressures of the location. The fluid model and 
rock–fluid settings for the dynamic simulation were based on the lithologies of the static 
geologic model. Relative permeability curves were obtained from published data (Bennion and 
Bachu, 2005) for different sedimentary lithologies including the sands, carbonates, and shales of 
the COSS.  
 

Numerical Tuning 
 

The numerical tuning technique was used to optimize the numerical settings for increasing 
the speed of the simulation runs. Various parameters such as pressure change and the tolerance 
of convergence over each time step were tracked to tune the integrated settings for producing the 
lowest optimization critical points (Griffith and Nichols, 1996; Hutchinson, 1989; LeDimet and 
others, 1995). The optimization critical points used in the project included material balance error, 
central processing unit (CPU) time, and simulator failure percentage. After numerical tuning, 
depending on the simulation scenario, up to 40% reduction in running time can be achieved. 
 

Scenario 1 
 
 The first scenario of the dynamic simulation includes a base case and seven additional 
cases to explore the CO2 storage capacity below the 16 aggregated point sources based on 
various factors. As mentioned in the upscaling process, a polygon was centered on each CO2 
source, placing the injection wells within a radius of 20 miles. Injection cases were then applied 
at each location exploring the sensitivity of the input parameters. Changes in parameters include 
increasing and decreasing Kv/Kh, inclusion of water extraction wells, changes in relative 
permeability, and a stepwise injection rate. The simulation period in each case has an injection 
period and a postinjection period to monitor the pressure transient. 
 

Base Case 
 
 Seen in Figure 37, the base case includes a total of 16 wells, which is one vertical injector 
for each CO2 emission source. Injection occurs over a 36-year time span (2014–2050), with an 
additional 50-year postinjection time span to monitor the pressure transient. The vertical to 
horizontal permeability ratio (Kv/Kh) is set at 0.1, and relative permeability is defined with the 
curves from Bennion and Bachu (2005). 
 
 During simulation of the base case, a large amount of CO2 is injected using only 16 wells. 
The injection over a 36-year time span allowed for a total of 82 Mt of CO2 to be injected which 
is 2.2% of the total annual CO2 emissions from these sources (Table 4). Each of the following 
cases modifies parameters from this base case to optimize injection of CO2. 
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improved the overall CO2 injection. However, based on these results, the per well annual 
injection was only about 185,000 ton/yr. At these injection rates, about 563 wells would have 
been needed to reach the injection target of 5200 Mt.  
 
 Case 2 compares the impact on CO2 storage by using a formation with a high rock 
compressibility value. High rock compressibility results have a large effect on the total amount 
of CO2 storage. The total amount of mass stored in Case 2 increased to 2795 Mt which is 16.3% 
more than Case 1. Even with this increase, the per well annual injection rate is only about 
265,000 ton/yr and would require 392 wells spread out even further to meet the injection target. 
 

Cases 3 and 4 
 
 Cases 3 and 4 build upon Cases 1 and 2. For each case, 163 water extraction wells are 
added around the vertical injectors to increase the volume and maintain the reservoir pressure for 
CO2 injection. Case 3 has the low rock compressibility value, and Case 4 has the high value. 
Case 3 injected 2644 Mt compared to 1949 Mt from Case 1, and Case 4 injected 3042 Mt 
compared to 2795 Mt in Case 2. This shows that water extraction can play a significant role in 
CO2 injection. However, water extraction will play a more significant role if rock compressibility 
is low. In addition, it may be more effective to use those 163 extractors as injectors in other areas 
to increase the total storage even higher. Based on the Case 1 results, adding an additional  
163 injectors may have added 1508 Mt of storage or 3457 Mt (66.5%) of the target mass. The 
increase in the high-rock-compressibility case may have been much more pronounced with  
374 injectors potentially storing 95% of the target volume based on Case 2 per well injection 
rates. 
 

Cases 5 and 6 
 
 Cases 5 and 6 were designed to test the effects of horizontal injection in comparison to 
vertical injection in Cases 1 and 2. For both cases, all vertical injection wells are converted to 
horizontal injectors (7000 ft long) to enhance more CO2 injection without water extraction. Case 
5 has the low rock compressibility value, and Case 6 has the high value. The change from 
vertical to horizontal injectors does not have a large impact on the amount of CO2 injected. Case 
5 injected a total of 2039 Mt compared to 1949 Mt in Case 1, and Case 6 injected 2899 Mt 
compared to 2795 Mt in Case 2. Both cases increased injection about 2%. 
 

Cases 7 and 8 
 
 Cases 7 and 8 include both water extraction and horizontal injection. With low and high 
rock compressibility in Cases 7 and 8, total injected CO2 for Cases 7 and 8 were 2695 and  
3111 Mt, respectively.  
 

Summary of Scenario 2 
 
 The large difference between Scenarios 1 and 2 included the movement of the injection 
clusters to areas where high permeability values were connected in the geocellular model and 
distributed 16 injection clusters to 25 injection locations. Rock compressibility, water extraction 
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at each injection cluster, and conversion of vertical injectors to horizontal are also sensitive 
parameters in determining the amount of injected CO2. These variables for each case were 
changed to help optimize injection and determine the effect on the overall storage capacity. 
Table 5 presents the results and the parameters used in each case of this scenario. 
 
 The largest effects that helped increase CO2 injection in this scenario are the rock 
compressibility values, added water extraction at each site, and moving the injection locations to 
“better” locations (Figure 44). Each of these parameters was combined in Case 8, which injected 
59.8% of the overall emissions from large CO2 sources of the study area (Figures 46 and 47). 
This case gave the most optimal injection scenario over a 50-year injection period than others. 
 
 Based on the results of Scenario 2, the selection of areas with better permeability and 
connected volume had a large impact on increasing the total amount of CO2 stored and the per 
well injection rates. However, even in the better area, the COSS was not able to support 211 
injection wells with an average annual injection rate of 0.5 Mt/yr. In Scenario 2, the average 
annual per well injection rate was between 185,000 to 275,000 ton/yr with horizontal wells. At 
these average injection rates, a total of 378 to 563 wells would have been required to meet the 
injection target. 
 

Discussion of the Two Scenarios 
 
 Reservoir heterogeneity plays a crucial role in overall CO2 injection. The basal saline 
system has ideal characteristics but relies on optimal operations which selected the “better” 
geologic injection location to sink the total emitted CO2. The two different scenarios did not 
reach the total output of the CO2 emissions because of the limited number of wells and injection 
clusters. Problems of injection occur for Scenario 1 because of the location of the initial injection 
clusters over areas of poor geologic conditions such as areas of low permeability and porosity 
and disconnected volumes. Scenario 2 increased injectivity after the injection clusters were 
moved to areas of “better” geologic properties and distributed nine more injection clusters based 
on Scenario 1 to reach 59.8% of the total CO2 emissions. Figure 48 shows the results and 
comparisons of each case for both scenarios.  
 
 The most optimal case in Scenario 1, Case 6, had the best CO2 injection by using a 
stepwise injection approach and water extraction in the Duffield–Warburg area. This optimal 
case injected 1411.61 Mt of CO2 over a 50-year period which is 28.4% of the annual emissions 
in the region. The results of Scenario 2 for each separate injection cluster had mixed results 
where some sources were able to inject most of the emissions and some very little (Appendix B). 
Regions that injected little amounts of the emitted CO2 are areas where the reservoir started to 
thin and had areas of lower Kh (mD*ft) even with high permeability in the connected volume  
(Figure 49). Results of Scenario 2 would be more optimistic with increasing better injection 
locations and the number of injectors and adding water extractors around the injectors for the 
total amount of emitted CO2. 
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Table 5. Results of the Simulation Cases of Scenario 2 (columns display the parameters for each case, the total amount of CO2 
injected, and percentage of the total large-scale emissions in the study area) 

Case 
Total 

Injectors 
Total 

Extractors 
Years of 
Injection

Postinjection, 
years 

Water 
Extraction

Horizontal 
Injection 

Rock 
Compressibility 

Total Injected 
CO2, Mt 

Injected, 
CO2, % 

1 211 No 50 36 No No Low 1949 37.5 
2 211 No 50 36 No No High 2795 53.8 
3 211 163 50 36 Yes No Low 2644 50.8 
4 211 163 50 36 Yes No High 3042 58.5 
5 211 No 50 36 No Yes Low 2040 39.2 
6 211 No 50 36 No Yes High 2899 55.8 
7 211 163 50 36 Yes Yes Low 2695 51.8 
8 211 163 50 36 Yes Yes High 3112 59.8 
Expected Total CO2 Injection for All of the Emission Resources over 50 years 5200 100 
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 Pressure differences were monitored in the simulation during the 50-year injection period 
and a 36-year postinjection period for Scenario 2. Monitoring the pressure differences help 
determine associated risks with long-term storage in the basal saline system. Results on the 
pressure differences for each case in Scenario 2, found in Appendix C, show small changes over 
a 36-year time frame. These minimal pressure differences indicate small risks of leakage from 
the reservoir and integrity of the sealing cap rock due to CO2 injection in the basal saline aquifer 
system. 
 

The basal saline system should be considered an overall target formation for CO2 
sequestration with 412 Gt of calculated static storage capacity at a 9.1% efficiency factor. A 
static storage mass was calculated for areas only suitable for CO2 storage. Areas suitable for 
storage exist where a suitable cap rock occurs and injection is in areas where TDS is greater than  
10,000 ppm.  
 
 Reservoir quality and heterogeneity play a large role in the injection process. Moving the 
injection clusters to more optimal geology helped inject larger amounts of CO2 in the basal saline 
system. Moreover, increasing the number of injectors and adding water extractors around the 
injectors could be the primary option to increase the injectivity and, ultimately, the total amount 
of injected CO2 from emission sources rather than changing Kv/Kh ratio, using horizontal wells, 
and tracking residual water/gas.  
 
 Rock compressibility shows an important role for reservoir pressure transient regarding 
storage capacity for the cases without water extraction. This effect is reduced by adding water 
extraction because of the balance of the injection and production in the system. It means that 
selecting the injection location with high rock compressibility could be a better choice for more 
CO2 injection than these locations with low rock compressibility.  
 
 The reservoir pressure in all of the cases with water extraction is lower than the cases 
without water extraction. This means that water extraction could play a significant role in 
reservoir management and risk assessment. 
 
 
STATIC CO2 STORAGE RESOURCE VS. DYNAMIC CO2 STORAGE CAPACITY 
 
 The static CO2 storage resource potential was estimated to be approximately 218, 412, and 
706 Gt at the P10, P50, and P90 confidence intervals. With this amount of storage potential, the 
COSS should be able to store between 2100 and 6780 years of the current 104 Mt/yr of point 
source CO2 emissions from the overlying sources. Based on this calculation, it should seem 
relatively straightforward to store 104 Mt/yr for 36 or 50 years, resulting in a total storage of 
3744 or 5200 Mt, respectively. However, when different cases were designed to simulate the 
injection and storage into the COSS, no cases were run where this total goal was met. In each 
case, injectivity was a limiting factor, and in all cases, many more wells would have been 
required to meet the storage target. The postsimulation analysis reveals that to inject and store 
104 Mt/yr of CO2 for 50 years (5200 Mt) in the COSS, a total of 378 to 1050 wells would have 
been required, instead of the 210 or 211 wells that were simulated. This would require dispersing 
the CO2 to a greater number of injection areas than the 25 that were simulated. 
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To increase the total stored mass of CO2, it may be more effective to use additional 
injection wells across a broader area rather than a blending of injection and water extraction 
wells in a more confined extent. For example, if the 163 water extraction wells in Cases 3 and 4 
of Scenario 2 were, instead, 163 injectors in another region of the COSS, and an additional 1508 
to 3457 Mt of storage could be obtained, resulting in nearly 66% of the target storage value. The 
increase in stored CO2 in the high-rock-compressibility case of Scenario 2 may have been much 
more pronounced, with 374 injectors potentially storing 95% of the target storage mass based on 
Case 2 per well injection rates. 
 

In a comparison of the total static CO2 resource value for the 25 injection areas of  
Scenario 2 to the high and low case injection totals in the dynamic simulations, only a relatively 
small fraction of the total capacity was used (Table 6). However, it should be noted that this does 
not imply that the efficiency factors used in this investigation are inaccurate. The dynamic 
simulations in Scenario 2 were only run for 50 years, and for a majority of the cases, the slope of 
the injection rate was constant across that time period. The steady injection rate indicates that the 
COSS was still accepting CO2 and the true dynamic capacity had not yet been reached. 
 
 
CONSIDERATIONS AND FUTURE WORK 
 
 The COSS static geocellular model was built with limited amounts of data for the size of 
the region it encompasses. This limited amount of data results in relatively high uncertainty in 
areas where wells do not exist. This is especially true near most of the clusters used in the 
dynamic simulations. The model was built with one statistical realization which can result in 
optimal geologic conditions being predicted for one emission source over another. This does not 
necessarily mean the geology is, in reality, optimal (or poor) at that CO2 source, but that multiple 
realizations should be performed to bolster the statistical significance of the geologic prediction. 
It should also be noted that because of the broad-scale coarseness of this model, it should not be 
used for site-specific planning of a commercial CO2 storage project.  
 
 The explorations with more injectors and extractors need to be investigated for the amount 
of CO2 from emission sources. All expected CO2 from resources may be injected with more wells 
(injectors and extractors), especially in areas with better Kh (thick, connected, high-
permeability). Moreover, the fine-scale model with much focus on local injection areas for 
specific CO2 emission sources may provide detailed insights of storage potential. In addition, 
geomechanical, geochemical, and geothermal behaviors need to be integrated throughout the 
entire modeling and simulation process to investigate the role of these variables in the overall 
storage estimation. 
 
 
Table 6. Static versus Dynamic Capacity (Gt) for Scenario 2 Injection Locations 
Total 
Resource 

Static Resource After Efficiency Factor Applied Dynamic Capacity 
P10 P50 P90 Low High 

107.6 7.9 15.0 25.8 1.9% 3.1% 
 



 

58 

CONCLUSIONS 
 

A binational effort between the United States and Canada successfully characterized the 
COSS in the Williston and Alberta Basins of the northern Great Plains–Prairie region of North 
America in the United States and Canada. Through this characterization process, an extensive  
3-D geocellular model of the system was constructed for the purpose of determining the static 
CO2 capacity and to serve as the foundation for dynamic simulation. The resulting static storage 
capacity of 218, 412, and 706 Gt at the P10, P50, and P90 percentiles reflect the application of 
storage efficiency values of 4.8%, 9.1%, and 15.6%, respectively, for clastic reservoirs. At the 
current emission rate of approximately 104 Mt/yr for the large-scale CO2 sources in the region, 
the static capacity represents thousands of years of storage. 
 

Two scenarios were investigated to determine the feasibility of injecting a total of 104 Mt 
from the 25 large stationary sources overlying the COSS. The first injection scenario considered 
seven cases where the target was to inject this total mass of CO2 for 36 or 50 years in  
16 injection areas using a total of 210 wells. The number of wells is based on an assumed per 
well injection rate of ~0.5 Mt/yr. Results from these cases show a total mass of CO2 injected 
ranging from 82 to 1412 Mt across the injection period of 36 and 50 years. These values 
represent between 2.2% and 27.2% of the available CO2 emitted from the 16 source locations. 
The second scenario investigated eight new cases where the original 16 injection locations were 
disaggregated and moved (pipelined) to areas defined by the model as having good reservoir 
volume connection (geobodies) based on permeabilities greater than 50 mD. Injection amounts 
in the second scenario range from 1949 to 3112 Mt of CO2. These values represent 37.5% to 
59.8% of the CO2 emitted from the source locations. Based on the results of both scenarios, the 
selection of areas with better permeability and connected volume had a large impact on 
increasing the total amount of CO2 stored and the per well injection rates. However, even in the 
better area the COSS was not able to support 21l injection wells with an average injection rate of 
0.5 Mt/yr. In the second scenario, the average annual per well injection rate was between 
185,000 and 275,000 tons/yr. At these injection rates, a total of 378 to 563 wells would have 
been required to meet the injection target. Pressure differences monitored in the second scenario 
show small changes in the 50-year injection time period. These minimal pressure differences 
indicate low risks of leakage from the reservoir and impact to the integrity of the sealing cap 
rock as a result of CO2 injection in the COSS. Although this broad-scale study should not be 
used for site-specific interpretation, the COSS should be considered as a large-scale viable target 
for CO2 storage across the central interior of North America.  
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PROPERTIES OF THE BASAL CAMBRIAN 
AQUIFER SYSTEM 
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PROPERTIES OF THE BASAL CAMBRIAN AQUIFER SYSTEM 
 
 
Table A-1. Permeability and Porosity Properties for the Aquifer and Different Lithologies 

 
 

Table A-2. Variogram Properties for the Geocellular Model 
Variogram Vertical Max. Min. Max. Dir. Min. Dir.
Shale 123 1,845,219 1,626,989 140 50 
Carbonate 174 621,785 326,831 140 50 
Sand 156 1,778,645 1,326,341 140 50 
Silt 173 357,010 327,708 140 50 
Porosity and Permeability 97 1,440,000 1,440,000 N/A N/A 

 
 

 Min. 
Perm. 

Mean 
Perm. 

Max. 
Perm 

Std Dev. 
Perm. 

Min. 
Porosity

Mean 
Porosity 

Max. 
Porosity 

Std. Dev. 
Porosity 

Aquifer 0.01 24.8 3202 122 0.00 0.07 0.38 0.074 
Sand 0.01 40 3202 120.7 0.01 0.11 0.38 0.080 
Shale 0.001 1.4 2 0.7 0.00 0.01 0.15 0.004 
Carbonate 0.003 0.3 37 1.7 0.00 0.02 0.27 0.031 
Silt 0.01 14 53 68 0.00 0.06 0.28 0.050 
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INJECTION RESULTS FOR SCENARIO 2  
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